线性代数|机器学习-P3乘法和因式分解矩阵

文章目录

  • [1. 矩阵分解](#1. 矩阵分解)
  • [2. S = Q Λ Q T S=Q\Lambda Q^T S=QΛQT](#2. S = Q Λ Q T S=Q\Lambda Q^T S=QΛQT)
  • [3. A = U Σ V T A=U\Sigma V^T A=UΣVT](#3. A = U Σ V T A=U\Sigma V^T A=UΣVT)
  • [4. A = LU 分解](#4. A = LU 分解)
  • [5. 矩阵的四个子空间](#5. 矩阵的四个子空间)

1. 矩阵分解

目前我们有很多重要的矩阵分解,每个分解对应于多个前提条件,分解方法,分解后的形状会中如下:

2. S = Q Λ Q T S=Q\Lambda Q^T S=QΛQT

当S为对称矩阵的时候,可以将S分解: S = Q Λ Q T S=Q\Lambda Q^T S=QΛQT,展开可得:
S = λ 1 q 1 q 1 T + λ 2 q 2 q 2 T + ⋯ λ n q n q n T \begin{equation} S=\lambda_1q_1q_1^T+\lambda_2q_2q_2^T+\cdots\lambda_nq_nq_n^T \end{equation} S=λ1q1q1T+λ2q2q2T+⋯λnqnqnT

  • 两边乘以 q i q_i qi可得:
    S q i = λ 1 q 1 q 1 T q i + λ 2 q 2 q 2 T + ⋯ + λ i q i q i T q i + ⋯ + λ n q n q n T q i ; q i T q i = 1 , q j T q i = 0 , i ≠ j \begin{equation} Sq_i=\lambda_1q_1q_1^Tq_i+\lambda_2q_2q_2^T+\cdots+\lambda_iq_iq_i^Tq_i+\cdots+\lambda_nq_nq_n^Tq_i;q_i^Tq_i=1,q_j^Tq_i=0,i\neq j \end{equation} Sqi=λ1q1q1Tqi+λ2q2q2T+⋯+λiqiqiTqi+⋯+λnqnqnTqi;qiTqi=1,qjTqi=0,i=j
    S q i = λ i q i → λ i = q i T S q i \begin{equation} Sq_i=\lambda_iq_i\rightarrow \lambda_i=q_i^TSq_i \end{equation} Sqi=λiqi→λi=qiTSqi

3. A = U Σ V T A=U\Sigma V^T A=UΣVT

奇异值分解可以对任何实数矩阵有效,这里面核心的有两点:

    1. 通过 A A T AA^T AAT来算 σ 2 \sigma^2 σ2时,我们需要对A的 σ \sigma σ的正负号进行验证.
    1. 我们需要了解U,V正交单位特征向量与A的四个子空间的关系:真神奇!!!

4. A = LU 分解

假设我们有矩阵A,我们希望对其进行LU分解如下:
A = L U → [ 2 3 4 7 ] = [ 1 0 2 1 ] [ 2 3 0 1 ] \begin{equation} A=LU\rightarrow\begin{bmatrix} 2&3\\\\ 4&7 \end{bmatrix}=\begin{bmatrix} 1&0\\\\ 2&1 \end{bmatrix}\begin{bmatrix} 2&3\\\\ 0&1 \end{bmatrix} \end{equation} A=LU→ 2437 = 1201 2031

  • 矩阵A分解为两个秩为1的矩阵相加:

    2 3 4 7 \] = \[ 2 3 4 6 \] + \[ 0 0 0 1 \] = \[ 1 2 \] \[ 2 3 \] + \[ 0 1 \] \[ 0 1 \] \\begin{equation} \\begin{bmatrix} 2\&3\\\\\\\\ 4\&7 \\end{bmatrix}=\\begin{bmatrix} 2\&3\\\\\\\\ 4\&6 \\end{bmatrix}+\\begin{bmatrix} 0\&0\\\\\\\\ 0\&1 \\end{bmatrix}=\\begin{bmatrix}1\\\\\\\\2\\end{bmatrix}\\begin{bmatrix}2\&3\\end{bmatrix}+\\begin{bmatrix}0\\\\\\\\1\\end{bmatrix}\\begin{bmatrix}0\&1\\end{bmatrix} \\end{equation} 2437 = 2436 + 0001 = 12 \[23\]+ 01 \[01

5. 矩阵的四个子空间

我们知道,对于一个m 行 n 列的矩阵A来说,根据列和行来说,分成4个空间,

  • C ( A ) C(A) C(A)列空间(columns space),维度为 R m R^m Rm
  • C ( A T ) C(A^T) C(AT)行空间(rows space),维度为 R n R^n Rn
  • N ( A ) N(A) N(A)零空间(rows space),维度为 R n R^n Rn
  • N ( A T ) N(A^T) N(AT)左零空间(rows space),维度为 R m R^m Rm
    四个子空间的相互关系如下:
相关推荐
领航猿1号1 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
我爱C编程3 小时前
基于无六环H校验矩阵和归一化偏移minsum算法的LDPC编译码matlab性能仿真
matlab·矩阵·ldpc·无六环·归一化偏移·minsum
短视频矩阵源码定制3 小时前
矩阵系统哪个好?2025年全方位选型指南与品牌深度解析
java·人工智能·矩阵·架构·aigc
hakuii4 小时前
SVD分解后的各个矩阵的深层理解
人工智能·机器学习·矩阵
bubiyoushang8884 小时前
使用MATLAB计算梁单元的刚度矩阵和质量矩阵
开发语言·matlab·矩阵
这张生成的图像能检测吗4 小时前
(论文速读)基于图像堆栈的低频超宽带SAR叶簇隐蔽目标变化检测
图像处理·人工智能·深度学习·机器学习·信号处理·雷达·变化检测
Blossom.1185 小时前
大模型在边缘计算中的部署挑战与优化策略
人工智能·python·算法·机器学习·边缘计算·pygame·tornado
无风听海5 小时前
神经网络之奇异值分解
神经网络·线性代数·机器学习
HelloRevit5 小时前
机器学习、深度学习、大模型 是什么关系?
人工智能·深度学习·机器学习
woshihonghonga6 小时前
Dropout提升模型泛化能力【动手学深度学习:PyTorch版 4.6 暂退法】
人工智能·pytorch·python·深度学习·机器学习