% 步骤1:加载风电功率数据
load('wind_power_data.mat'); % 假设数据存储在变量power_data中
% 步骤2:划分训练集和测试集
trainRatio = 0.7; % 训练集比例
trainSize = floor(trainRatio * length(power_data));
trainData = power_data(1:trainSize);
testData = power_data(trainSize+1:end);
% 步骤3:使用ARIMA模型进行时间序列预测
arimaModel = arima(2, 1, 2); % ARIMA阶数根据实际数据调整
arimaFit = estimate(arimaModel, trainData);
arimaForecast = forecast(arimaFit, numel(testData));
% 步骤4:使用支持向量机(SVM)进行回归预测
svmModel = fitrsvm(trainData, arimaForecast, 'KernelFunction', 'linear'); % 根据实际数据调整SVM参数
svmForecast = predict(svmModel, testData);
% 步骤5:绘制预测结果曲线
figure;
plot(power_data, 'b', 'LineWidth', 2);
hold on;
plot(trainSize+1:length(power_data), svmForecast, 'r--', 'LineWidth', 2);
xlabel('时间');
ylabel('风电功率');
legend('实际值', '预测值');
grid on;
请注意,以上代码仅为示例代码,实际应用中可能需要根据具体情况进行修改和优化。代码中的ARIMA模型阶数和SVM参数需要根据实际数据进行调整,以获得更好的预测效果。此外,还可以考虑对数据进行预处理、特征工程等步骤来改进预测模型。