【ARIMA时序预测】基于支持向量机结合ARIMA-SVM实现风电功率预测附matlab代码

% 步骤1:加载风电功率数据

load('wind_power_data.mat'); % 假设数据存储在变量power_data中

% 步骤2:划分训练集和测试集

trainRatio = 0.7; % 训练集比例

trainSize = floor(trainRatio * length(power_data));

trainData = power_data(1:trainSize);

testData = power_data(trainSize+1:end);

% 步骤3:使用ARIMA模型进行时间序列预测

arimaModel = arima(2, 1, 2); % ARIMA阶数根据实际数据调整

arimaFit = estimate(arimaModel, trainData);

arimaForecast = forecast(arimaFit, numel(testData));

% 步骤4:使用支持向量机(SVM)进行回归预测

svmModel = fitrsvm(trainData, arimaForecast, 'KernelFunction', 'linear'); % 根据实际数据调整SVM参数

svmForecast = predict(svmModel, testData);

% 步骤5:绘制预测结果曲线

figure;

plot(power_data, 'b', 'LineWidth', 2);

hold on;

plot(trainSize+1:length(power_data), svmForecast, 'r--', 'LineWidth', 2);

xlabel('时间');

ylabel('风电功率');

legend('实际值', '预测值');

grid on;

请注意,以上代码仅为示例代码,实际应用中可能需要根据具体情况进行修改和优化。代码中的ARIMA模型阶数和SVM参数需要根据实际数据进行调整,以获得更好的预测效果。此外,还可以考虑对数据进行预处理、特征工程等步骤来改进预测模型。

相关推荐
满分观察网友z4 分钟前
从混乱到有序:我用“逐层扫描”法优雅搞定公司组织架构图(515. 在每个树行中找最大值)
后端·算法
满分观察网友z11 分钟前
一行代码的惊人魔力:从小白到大神,我用递归思想解决了TB级数据难题(3304. 找出第 K 个字符 I)
后端·算法
字节卷动19 分钟前
【牛客刷题】活动安排
java·算法·牛客
yi.Ist1 小时前
数据结构 —— 键值对 map
数据结构·算法
s153351 小时前
数据结构-顺序表-猜数字
数据结构·算法·leetcode
Coding小公仔1 小时前
LeetCode 8. 字符串转换整数 (atoi)
算法·leetcode·职场和发展
GEEK零零七1 小时前
Leetcode 393. UTF-8 编码验证
算法·leetcode·职场和发展·二进制运算
DoraBigHead2 小时前
小哆啦解题记——异位词界的社交网络
算法
木头左3 小时前
逻辑回归的Python实现与优化
python·算法·逻辑回归
lifallen7 小时前
Paimon LSM Tree Compaction 策略
java·大数据·数据结构·数据库·算法·lsm-tree