transformers peft加载lora模型;TextStreamer流式输出,kv cache使用

1、transformers peft加载lora模型

https://github.com/hiyouga/LLaMA-Factory/blob/cae47379079ff811aa385c297481a27020a8da6b/scripts/loftq_init.py#L13

代码:

cpp 复制代码
from peft import AutoPeftModelForCausalLM, PeftModel
from transformers import AutoTokenizer,AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("/ai/loong/Qwen1.5-7B-Chat")

model = AutoModelForCausalLM.from_pretrained("/ai/loong/Qwen1.5-7B-Chat", trust_remote_code=True, device_map="auto")

model = PeftModel.from_pretrained(model, "/ai/loong/output/checkpoint-300",offload_folder='./')


model.eval()
inputs = tokenizer("你是谁", return_tensors="pt")

outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=500)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])

TextStreamer流式输出

参考:https://zhuanlan.zhihu.com/p/694576810

cpp 复制代码
from peft import AutoPeftModelForCausalLM, PeftModel
from transformers import AutoTokenizer,AutoModelForCausalLM,TextStreamer
import torch

tokenizer = AutoTokenizer.from_pretrained("/ai/loong/Qwen1.5-7B-Chat")

model = AutoModelForCausalLM.from_pretrained("/ai/loong/Qwen1.5-7B-Chat", trust_remote_code=True, device_map="auto")

model = PeftModel.from_pretrained(model, "/ai/loong/output/checkpoint-300",offload_folder='./')



inputs = tokenizer("听说你以前叫通义千问", return_tensors="pt")
streamer = TextStreamer(tokenizer)
 
# Despite returning the usual output, the streamer will also print the generated text to stdout.
model.generate(**inputs, streamer=streamer, max_new_tokens=20)

kv cache使用

use_cache=True

cpp 复制代码
model.eval()
inputs = tokenizer("你是谁", return_tensors="pt")

outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=500,use_cache=True)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
相关推荐
大千AI助手16 小时前
加权分位数直方图:提升机器学习效能的关键技术
人工智能·机器学习·xgboost·直方图·加权直方图·特征分裂
星期天要睡觉17 小时前
深度学习——基于ResNet18迁移学习的图像分类模型
人工智能·python·分类·迁移学习
sunkl_17 小时前
JoyAgent问数多表关联Bug修复
人工智能·自然语言处理
AI数据皮皮侠17 小时前
中国博物馆数据
大数据·人工智能·python·深度学习·机器学习
强哥之神17 小时前
从零理解 KV Cache:大语言模型推理加速的核心机制
人工智能·深度学习·机器学习·语言模型·llm·kvcache
中达瑞和-高光谱·多光谱17 小时前
多光谱图像颜色特征用于茶叶分类的研究进展
人工智能·分类·数据挖掘
格林威18 小时前
UV 紫外相机在半导体制造领域的应用
人工智能·数码相机·opencv·计算机视觉·视觉检测·制造·uv
精英的英18 小时前
【工具开发】适用于交叉编译环境的QT qmake项目转换vscode项目插件
人工智能·vscode·qt·开源软件
茜茜西西CeCe18 小时前
数字图像处理-图像增强(2)
人工智能·算法·计算机视觉·matlab·数字图像处理·图像增强·陷波滤波器