AI 换装之OOTDiffusion

项目地址:https://github.com/levihsu/OOTDiffusion

试用地址:https://ootd.ibot.cn/
其它项目

本地部署

下载模型

  1. git lfs安装, 然后国内源下载 git clone https://www.modelscope.cn/AI-ModelScope/clip-vit-large-patch14.git
  2. 然后国内镜像手动下载 https://hf-mirror.com/levihsu/OOTDiffusion/tree/main 相应模型文件(git 好像访问不到)
  3. 将模型文件放到项目checkpints下

代码修改

由于只有一个GPU,文件run\gradio_ootd.py中#24~#26原来为:

openpose_model_dc = OpenPose(1)

parsing_model_dc = Parsing(1)

ootd_model_dc = OOTDiffusionDC(1)

把它们改成:

openpose_model_dc = openpose_model_hd

parsing_model_dc = parsing_model_hd

ootd_model_dc = ootd_model_hd

代码运行

  1. 指定图片运行 python3 run_ootd.py --model_path ren.png --cloth_path clothes2.jpg --scale 2.0 --sample 4
  2. 网页demo运行 python3 gradio_ootd.py

原理解析

简介

基于图片虚拟试穿(image-based virtual try-on ,VTON)

基于扩散模型全套试穿:Outfitting over Try-on Diffusion (OOTDiffusion)

利用预训练的潜在扩散模型的力量(pretrained latent diffusion models),用于现实和可控的(realistic and controllable)虚拟试穿。在没有明确的衣物形变适应过程(warping process)的情况下,

提出了一个outfitting UNet来学习服装细节特征,在扩散模型去噪过程中,通过我们提出的服装融合outfitting fusion将其与目标人体融合。

前置内容

  1. clip-vit-large-patch14
  2. Stable Diffusion v1.5
  3. VAE

原理

  1. 在左侧,服装图像被 clip-vit-large-patch14 编码到潜在空间中,并输入到服装UNet中进行单步处理。
  2. 与CLIP编码器生成的辅助调节输入一起,通过服装融合(outfitting fusion)将服装特征纳入去噪UNet。
  3. 在训练过程中,为了实现无分类器的指导(classifier-free guidance),对训练过程进行了 outfitting dropout。
  4. 在右侧,输入的人类图像通过掩码生成模块(mask generator, HumanParsing+OpenPose )将需要换衣以及相近的地方被遮盖为黑色(masked),并与高斯噪声连接在一起,作为多个采样步骤的去噪UNet的输入。
  5. 去噪后,特征映射被解码回图像空间作为我们的试戴结果。
相关推荐
子夜江寒2 分钟前
基于 OpenCV 的模板匹配技术实例
opencv·计算机视觉
wyw000011 小时前
目标检测之Faster R-CNN
计算机视觉
撬动未来的支点14 小时前
【AI】光速理解YOLO框架
人工智能·yolo·计算机视觉
لا معنى له17 小时前
学习笔记:Restormer: Efficient Transformer for High-Resolution Image Restoration
图像处理·笔记·学习·计算机视觉·transformer
一招定胜负17 小时前
OpenCV轮廓检测完全指南:从原理到实战
人工智能·opencv·计算机视觉
AI小怪兽18 小时前
RoLID-11K:面向小目标检测的行车记录仪路边垃圾数据集
人工智能·目标检测·计算机视觉
dazzle18 小时前
计算机视觉处理(OpenCV基础教学(二十二):霍夫变换技术详解)
人工智能·opencv·计算机视觉
格林威20 小时前
印刷电路板阻焊层缺失识别:防止短路风险的 7 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
aitoolhub20 小时前
H5交互设计:从策划到上线的实用方法论与避坑要点
人工智能·计算机视觉·交互·视觉传达
张彦峰ZYF20 小时前
多模态大模型、混合专家模型与云端协同架构
人工智能·计算机视觉·多模态大模型·混合专家架构·大小模型协同架构