背景
我需要对一张图像应用仿射变换,并确保变换后的图像内容不发生信息丢失。为此,需要根据变换后图像的四个角点,计算其最小外接矩形,并以此矩形为区域裁剪变换后的图像。目标是获得一个完整、有效保留原始图像信息的最小包围图像区域。
代码如下
cpp
int affineTransform(
const std::string& srcImagePath,
const std::string& dstImagePath,
const Point* srcPoints,
const Point* dstPoints,
double* affineParams,
int debugFlag
) {
// 1. 加载原始图像
cv::Mat srcImage = cv::imread(srcImagePath, cv::IMREAD_UNCHANGED);
if (srcImage.empty()) {
std::cerr << "Failed to load image: " << srcImagePath << std::endl;
return -1;
}
// 2. 输入点校验
if (!srcPoints || !dstPoints) return -2;
constexpr int REQUIRED_POINTS = 3;
std::vector<cv::Point2f> srcPts, dstPts;
for (int i = 0; i < REQUIRED_POINTS; ++i) {
srcPts.emplace_back(srcPoints[i].x, srcPoints[i].y);
dstPts.emplace_back(dstPoints[i].x, dstPoints[i].y);
}
// 3. 获取仿射变换矩阵并提取参数
cv::Mat affineMat = cv::getAffineTransform(srcPts, dstPts);
extractAffineParameters(affineMat, affineParams);
// 4. 原图四角及变换后的边界框
std::vector<cv::Point2f> corners = {
{0, 0},
{static_cast<float>(srcImage.cols), 0},
{static_cast<float>(srcImage.cols), static_cast<float>(srcImage.rows)},
{0, static_cast<float>(srcImage.rows)}
};
std::vector<cv::Point2f> transformedCorners;
cv::transform(corners, transformedCorners, affineMat);
cv::Rect boundingBox = cv::boundingRect(transformedCorners);
// 5. 计算需要填充的边界
int padLeft = boundingBox.x < 0 ? -boundingBox.x : 0;
int padTop = boundingBox.y < 0 ? -boundingBox.y : 0;
// 6. 根据通道数设置白色边界
cv::Scalar borderColor;
switch (srcImage.channels()) {
case 1: borderColor = cv::Scalar(255); break;
case 3: borderColor = cv::Scalar(255, 255, 255); break;
case 4: borderColor = cv::Scalar(255, 255, 255, 255); break;
default: throw std::runtime_error("Unsupported number of channels.");
}
// 7. 执行图像扩展
cv::Mat paddedImage;
cv::copyMakeBorder(srcImage, paddedImage, padTop, 0, padLeft, 0, cv::BORDER_CONSTANT, borderColor);
// 8. 更新坐标后重新计算变换矩阵
cv::Point2f offset(padLeft, padTop);
for (auto& pt : srcPts) pt += offset;
for (auto& pt : dstPts) pt += offset;
cv::Mat adjustedAffineMat = cv::getAffineTransform(srcPts, dstPts);
// 9. 仿射变换到目标图像
cv::Size dstSize(boundingBox.width + padLeft, boundingBox.height + padTop);
cv::Mat dstImage;
cv::warpAffine(paddedImage, dstImage, adjustedAffineMat, dstSize, cv::INTER_LINEAR, cv::BORDER_CONSTANT, borderColor);
// 10. 如果变换后图像偏移,进行裁剪
if (boundingBox.x > 0 || boundingBox.y > 0) {
boundingBox.x = std::max(boundingBox.x,0);
boundingBox.y = std::max(boundingBox.y,0);
int cropX = std::min(boundingBox.x, dstImage.cols);
int cropY = std::min(boundingBox.y, dstImage.rows);
int cropWidth = std::max(0, dstImage.cols - cropX);
int cropHeight = std::max(0, dstImage.rows - cropY);
cv::Rect validRoi(cropX, cropY, cropWidth, cropHeight);
dstImage = dstImage(validRoi).clone();
}
// 11. 调试信息
if (debugFlag) {
std::cout << "[AffineTransform Debug Info]\n";
std::cout << "Original Corners: "; printPoints(corners);
std::cout << "Transformed Corners: "; printPoints(transformedCorners);
std::cout << "Bounding Box: x=" << boundingBox.x << ", y=" << boundingBox.y
<< ", w=" << boundingBox.width << ", h=" << boundingBox.height << "\n";
std::cout << "Padding: left=" << padLeft << ", top=" << padTop << "\n";
std::cout << "Affine Matrix:\n" << affineMat << "\n";
std::cout << "Adjusted Affine Matrix:\n" << adjustedAffineMat << "\n";
std::cout << "Output Size: " << dstImage.cols << " x " << dstImage.rows << "\n";
}
// 12. 保存图像
return cv::imwrite(dstImagePath, dstImage) ? 0 : -3;
}
解释
随便在网上找一下放射变换的教程,可以知道,变换后的图像,经常是缩小且周围白边很大。因为一不小心就会过界导致图像信息丢失。一般的教程也不处理最小外接矩形。
思路如下:
首先是将原图的四个角进行放射变换。由变换后的四个角得到最小包围盒:cv::Rect boundingBox = cv::boundingRect(transformedCorners);
如果boundingBox 左上角顶点有负数,则说明变换后的图像到了第234象限,我们需要向上,向左扩展图像。这是第七步做的事情。得到扩充后的图像
将图像扩充白边以后,我们原图的坐标系其实被改变了,即向左上方移动了。所以我们要把原来计算仿射变换矩阵的三个点平移,重新计算仿射变换。
我们使用扩充后的图像和第二次计算的放射变换进行变换。得到目标图像。
第十步,如果变换后的图像包围盒的左上点并不是原点,我们还要进行剪裁
如此,才能得到最小矩形包围的图像