【Python机器学习】预处理对监督学习的作用

还是用cancer数据集,观察使用MinMaxScaler对学习SVC的作用。

首先,在原始数据上拟合SVC:

python 复制代码
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,random_state=0
)
svm=SVC(C=100)
svm.fit(X_train,y_train)
print('test set accuracy:{:.2f}'.format(svm.score(X_test,y_test)))

下面先用MinMaxScaler对数据进行缩放,然后再拟合SVC:

python 复制代码
scaler=MinMaxScaler()
scaler.fit(X_train)
X_train_scaler=scaler.transform(X_train)
X_test_scaler=scaler.transform(X_test)

svm.fit(X_train_scaler,y_train)

print('Scaler test set accuracy:{:.2f}'.format(svm.score(X_test_scaler,y_test)))

可以发现,数据缩放的作用非常显著。虽然数据缩放不涉及任何复杂的数据,但良好的做法仍然是使用scikit-learn提供的缩放机制,而不是自己重新实现它们,因为即使在这些简单的计算中也容易犯错。

还可以通过改变使用的类将一种预处理算法替换成另一种,因为所有的预处理类都具有相同的接口,都包含fit和transform方法:

python 复制代码
scaler=StandardScaler()
scaler.fit(X_train)
X_train_scaler=scaler.transform(X_train)
X_test_scaler=scaler.transform(X_test)

svm.fit(X_train_scaler,y_train)

print('SVM test accuracy:{:.2f}'.format(svm.score(X_test_scaler,y_test)))
相关推荐
吴佳浩1 小时前
LangChain 深入
人工智能·python·langchain
网安-轩逸4 小时前
回归测试原则:确保软件质量的基石
自动化测试·软件测试·python
Mr_Xuhhh4 小时前
YAML相关
开发语言·python
LplLpl114 小时前
AI 算法竞赛通关指南:基于深度学习的图像分类模型优化实战
大数据·人工智能·机器学习
咖啡の猫4 小时前
Python中的变量与数据类型
开发语言·python
依米s4 小时前
各年度人工智能大会WAIC核心议题(持续更新)
人工智能·人工智能+·waic·人工智能大会+
汤姆yu4 小时前
基于springboot的电子政务服务管理系统
开发语言·python
python机器学习建模5 小时前
22篇经典金融风控论文复现(2025年11月更新)
人工智能·机器学习·论文·期刊·金融风控
Codebee5 小时前
深度解析AI编程技术:从原理到实践,手把手教你落地
人工智能·设计模式·开源
武汉唯众智创5 小时前
基于五级工的人工智能训练师教学解决方案
人工智能·ai·产教融合·人工智能训练师·五级工·ai训练师