【Python机器学习】预处理对监督学习的作用

还是用cancer数据集,观察使用MinMaxScaler对学习SVC的作用。

首先,在原始数据上拟合SVC:

python 复制代码
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,random_state=0
)
svm=SVC(C=100)
svm.fit(X_train,y_train)
print('test set accuracy:{:.2f}'.format(svm.score(X_test,y_test)))

下面先用MinMaxScaler对数据进行缩放,然后再拟合SVC:

python 复制代码
scaler=MinMaxScaler()
scaler.fit(X_train)
X_train_scaler=scaler.transform(X_train)
X_test_scaler=scaler.transform(X_test)

svm.fit(X_train_scaler,y_train)

print('Scaler test set accuracy:{:.2f}'.format(svm.score(X_test_scaler,y_test)))

可以发现,数据缩放的作用非常显著。虽然数据缩放不涉及任何复杂的数据,但良好的做法仍然是使用scikit-learn提供的缩放机制,而不是自己重新实现它们,因为即使在这些简单的计算中也容易犯错。

还可以通过改变使用的类将一种预处理算法替换成另一种,因为所有的预处理类都具有相同的接口,都包含fit和transform方法:

python 复制代码
scaler=StandardScaler()
scaler.fit(X_train)
X_train_scaler=scaler.transform(X_train)
X_test_scaler=scaler.transform(X_test)

svm.fit(X_train_scaler,y_train)

print('SVM test accuracy:{:.2f}'.format(svm.score(X_test_scaler,y_test)))
相关推荐
web135085886352 小时前
Python大数据可视化:基于python的电影天堂数据可视化_django+hive
python·信息可视化·django
刘什么洋啊Zz2 小时前
MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用
人工智能·macos·ai·ollama·deepseek
东方芷兰2 小时前
伯克利 CS61A 课堂笔记 11 —— Mutability
笔记·python
奔跑草-3 小时前
【拥抱AI】GPT Researcher 源码试跑成功的心得与总结
人工智能·gpt·ai搜索·deep research·深度检索
禁默3 小时前
【第四届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2025】网络安全,人工智能,数字经济的研究
人工智能·安全·web安全·数字经济·学术论文
不会Hello World的小苗4 小时前
Java——列表(List)
java·python·list
boooo_hhh5 小时前
深度学习笔记16-VGG-16算法-Pytorch实现人脸识别
pytorch·深度学习·机器学习
AnnyYoung5 小时前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND6 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木6 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1