【Python机器学习】预处理对监督学习的作用

还是用cancer数据集,观察使用MinMaxScaler对学习SVC的作用。

首先,在原始数据上拟合SVC:

python 复制代码
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,random_state=0
)
svm=SVC(C=100)
svm.fit(X_train,y_train)
print('test set accuracy:{:.2f}'.format(svm.score(X_test,y_test)))

下面先用MinMaxScaler对数据进行缩放,然后再拟合SVC:

python 复制代码
scaler=MinMaxScaler()
scaler.fit(X_train)
X_train_scaler=scaler.transform(X_train)
X_test_scaler=scaler.transform(X_test)

svm.fit(X_train_scaler,y_train)

print('Scaler test set accuracy:{:.2f}'.format(svm.score(X_test_scaler,y_test)))

可以发现,数据缩放的作用非常显著。虽然数据缩放不涉及任何复杂的数据,但良好的做法仍然是使用scikit-learn提供的缩放机制,而不是自己重新实现它们,因为即使在这些简单的计算中也容易犯错。

还可以通过改变使用的类将一种预处理算法替换成另一种,因为所有的预处理类都具有相同的接口,都包含fit和transform方法:

python 复制代码
scaler=StandardScaler()
scaler.fit(X_train)
X_train_scaler=scaler.transform(X_train)
X_test_scaler=scaler.transform(X_test)

svm.fit(X_train_scaler,y_train)

print('SVM test accuracy:{:.2f}'.format(svm.score(X_test_scaler,y_test)))
相关推荐
19895 分钟前
【零基础学AI】第31讲:目标检测 - YOLO算法
人工智能·rnn·yolo·目标检测·tensorflow·lstm
艾莉丝努力练剑5 分钟前
【C语言】学习过程教训与经验杂谈:思想准备、知识回顾(三)
c语言·开发语言·数据结构·学习·算法
沐尘而生9 分钟前
【AI智能体】智能音视频-硬件设备基于 WebSocket 实现语音交互
大数据·人工智能·websocket·机器学习·ai作画·音视频·娱乐
Chasing__Dreams12 分钟前
python--杂识--18.1--pandas数据插入sqlite并进行查询
python·sqlite·pandas
巴伦是只猫13 分钟前
【机器学习笔记Ⅰ】3 代价函数
人工智能·笔记·机器学习
NetX行者13 分钟前
基于Vue 3的AI前端框架汇总及工具对比表
前端·vue.js·人工智能·前端框架·开源
ZZZS051614 分钟前
stack栈练习
c++·笔记·学习·算法·动态规划
位东风37 分钟前
【c++学习记录】状态模式,实现一个登陆功能
c++·学习·状态模式
hans汉斯40 分钟前
【人工智能与机器人研究】基于力传感器坐标系预标定的重力补偿算法
人工智能·算法·机器人·信号处理·深度神经网络
Star Curry1 小时前
【新手小白的嵌入式学习之路】-STM32的学习_GPIO 8种模式学习心得
stm32·嵌入式硬件·学习