SparkML

SparkML

一、介绍

Apache Spark ML 是机器学习库在 Apache Spark 上运行的模块。

功能模块介绍

名称 功能
ML Pipeline APIs 数据模型管道API
pyspark.ml.param module 模型参数模块
pyspark.ml.feature module 模型变量相关模块
pyspark.ml.classfication module 分类算法模块
pyspark.ml.culstering module 聚类算法模块
pyspark.ml.recommendation module 推荐系统模块
pyspark.ml.regression module 回归算法模块
pyspark.ml.tuning module 参数调整模块
pyspark.ml.evaluation module 模型验证模块

二、模型开发流程

1、dataframe数据模型

ML可以语言于各种数据模型,比如向量、文本、图形等,API采用spark SQL的dataframe来支持各类数据模型

2、transformer转换器

将一个dataframe转换为另一个dataframe,转换过程中,会修改原始变量,或创建新变量

3、estimators模型学习器

  • 模型学习器是拟合和训练数据的机器学习算法或其他算法的抽象
  • 实现fit()方法,这个方法输入一个dataframe并产生一个model即一个transformer转换器
  • 例如:一个机器学习算法是一个estimators模型学习器,比如这个算法是logisticregressionmodel,因此也是一个transformer转换器

4、pipeline管道

  • 将多个transformer和estimators绑在一起,形成一个工作流
  • 在机器学习中,通常会执行一系列算法来处理和学习模型,比如,一个简单的分类模型开发流程kennel包括以下步骤:
    • 将字符变量转换为数值变量
    • 进行缺失值、异常值等数据处理
    • 使用特征向量和标签学习一个预测模型

三、示例:基于随机森林的新闻分类任务

1、引入相关包

复制代码
from pyspark.sql import SparkSession
import warnings
from pyspark.sql.functions import *
from pyspark import StorageLevel
warnings.filterwarnings('ignore')

2、初始化spark

复制代码
spark = (SparkSession
         .builder
         .appName('文本分类器')
         .getOrCreate())

3、读取数据

复制代码
spark_sinanews = spark.read.json('./data/spark_data/sinaNews_201501.json')
spark_sinanews.show(5)

4、查看数据情况

5、数据处理

1、分词

使用jieba分词,安装方法:pip install jieba -i https://pypi.tuna.tsinghua.edu.cn/simple

引入并实例化

复制代码
import jieba
jieba.initialize()

# 定义udf函数
from pyspark.sql.types import StringType
def cut_words(input_str):
    if not jieba.dt.initialized: #主要是应用于分布式的情况
        jieba.initialize()
    ret = " ".join([w for w in jieba.lcut(input_str)])
    return ret

# 向spark注册自定义函数
preprocess_udf = udf(cut_words,StringType())

查看分词效果

复制代码
# 添加新列
spark_sinanews = spark_sinanews.withColumn('text_words',preprocess_udf('text'))
spark_sinanews.show(2)

2、类别编码

复制代码
# 对类别进行编码
spark_sinanews.groupBy('channel_title').count().orderBy(col('count').desc()).show()
复制代码
from pyspark.ml.feature import StringIndexer,IndexToString
# 字符------》编码
label_stringIdx = StringIndexer(inputCol='channel_title',outputCol='label').fit(spark_sinanews)
# 编码------》字符 用来看预测结果的
labelConverter = IndexToString(inputCol='prediction',outputCol='predictedLabel',labels=label_stringIdx.labels)

3、去除停用词

复制代码
# 分词与去除停用词
from pyspark.ml.feature import Tokenizer,StopWordsRemover

# 分词
tokenizer = Tokenizer(inputCol='text_words',outputCol='words')

with open('./data/spark_data/my_stop_words.txt',encoding='utf8')as f:
    stop_words = list(f.read().split('\n'))

# 停用词
stop_words_Remover = StopWordsRemover(inputCol='words',outputCol='filtered').setStopWords(stop_words)

4、bow特征

复制代码
from pyspark.ml import Pipeline
from pyspark.ml.feature import CountVectorizer

#(个数 ,[编码],[频次])
# 计算总的字数
vocab_tmp = spark_sinanews.select('text_words').rdd.flatMap(lambda line :line['text_words'].split(" "))

vocab = vocab_tmp.map(lambda word :(word,1)).reduceByKey(lambda a,b:a+b)

vocab.count()
复制代码
# bag of words count
# CountVectorizer将根据语料库中的词频排序选出前vocabSize个词,由于内存限制,取小些
countVectors = CountVectorizer(inputCol='filtered',outputCol='features',vocabSize=10000)

# 1、分词 2、去除停用词 3、bow特征 4、y标签转换
pipeline = Pipeline(stages=[tokenizer,stop_words_Remover,countVectors,label_stringIdx])

# fit the pipeline to training documents
pipelineFit = pipeline.fit(spark_sinanews)
dataSet = pipelineFit.transform(spark_sinanews)

dataSet.show(1)
复制代码
dataSet.select('features').show(2)

5、数据集切分

复制代码
dataSet.persist(storageLevel=StorageLevel(True,False,False,False))

# set seed for reproducibility
trainData,testData = dataSet.randomSplit([0.7,0.3],seed=100)
print('train data count:'+str(trainData.count()))
print('test data count:'+str(testData.count()))

6、建立随机森林模型

复制代码
# 随机森林模型

from pyspark.ml.classification import RandomForestClassifier

# 随便拍一个参数
rf = RandomForestClassifier(labelCol='label',\
                            featuresCol='features',\
                            numTrees=100,\
                            maxDepth=4,\
                            maxBins=32)
pipeline = Pipeline(stages=[tokenizer,stop_words_Remover,countVectors,label_stringIdx,rf,labelConverter])

trainData,testData = spark_sinanews.randomSplit([0.7,0.3])

trainData.persist()
testData.persist()

7、模型训练

复制代码
# train model ,this also runs the indexers
model = pipeline.fit(trainData)

8、模型预测

复制代码
predictions = model.transform(testData)
predictions.select('filtered','channel_title','features','prediction','label','predictedLabel').show(5)

9、关闭spark资源

复制代码
spark.stop()
相关推荐
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
计算机毕业设计木哥2 天前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
IT毕设梦工厂2 天前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB2 天前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐2 天前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
孟意昶3 天前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
智海观潮3 天前
Spark SQL | 目前Spark社区最活跃的组件之一
大数据·spark
盛源_013 天前
hadoop的api操作对象存储
hdfs·spark
欧阳方超3 天前
Spark(1):不依赖Hadoop搭建Spark环境
大数据·hadoop·spark