Apache Hadoop生态组件部署分享-Spark

zookeeper: Apache Hadoop生态组件部署分享-zookeeper

hadoop:Apache Hadoop生态组件部署分享-Hadoop

hive: Apache Hadoop生态组件部署分享-Hive

hbase: Apache Hadoop生态组件部署分享-Hbase

impala:Apache Hadoop生态组件部署分享-Impala

1、下载spark并解压

下载地址: https://spark.apache.org/downloads.html

apache 复制代码
tar -xf spark-3.5.7-bin-hadoop3.tgz -C /opt/apache/

2、配置spark-env.sh

bash 复制代码
cd /opt/apache/spark-3.5.7-bin-hadoop3/confcp spark-env.sh.template spark-env.sh
vim spark-env.sh 添加以下内容:YARN_CONF_DIR=$HADOOP_HOME/etc/hadoopexport SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080 -Dspark.history.retainedApplications=30 -Dspark.history.fs.logDirectory=hdfs://nameservice1/spark-yarn-log"

3、配置spark-defaults.conf

bash 复制代码
cp spark-defaults.conf.template spark-defaults.conf
vim spark-defaults.confspark.eventLog.enabled           truespark.eventLog.dir               hdfs://nameservice1/spark-yarn-logspark.yarn.historyServer.address=apache230.hadoop.com:18080   #作业: 在yarn rm 8088页面可以通过history跳转过去spark.history.ui.port=18080

4、启动spark history服务

bash 复制代码
/opt/apache/spark-3.5.7-bin-hadoop3/sbin/start-history-server.sh

http://apache230.hadoop.com:18080

5、验证spark-yarn

A. 客户端部署模式 验证计算pi

swift 复制代码
/opt/apache/spark-3.5.7-bin-hadoop3/bin/spark-submit \--master yarn \--class org.apache.spark.examples.SparkPi \/opt/apache/spark-3.5.7-bin-hadoop3/examples/jars/spark-examples_2.12-3.5.7.jar 10

注: 此时部署模式是在客户端上 所以日志在客户端显示

B.集群部署模式 验证计算pi

swift 复制代码
/opt/apache/spark-3.5.7-bin-hadoop3/bin/spark-submit \--master yarn --deploy-mode cluster \--class org.apache.spark.examples.SparkPi \/opt/apache/spark-3.5.7-bin-hadoop3/examples/jars/spark-examples_2.12-3.5.7.jar 2

说明: 这个时候就可以看到driver在231节点了,之前客户端部署模式是在哪个客户端执行,driver就在哪个机器上面

6、spark-shell验证

swift 复制代码
[root@apache230 bin]# ./spark-shellSetting default log level to "WARN".To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).25/09/30 10:24:22 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable25/09/30 10:24:23 WARN DomainSocketFactory: The short-circuit local reads feature cannot be used because libhadoop cannot be loaded.Spark context Web UI available at http://apache230.hadoop.com:4040Spark context available as 'sc' (master = local[*], app id = local-1759199063061).Spark session available as 'spark'.Welcome to      ____              __     / __/__  ___ _____/ /__    _\ \/ _ \/ _ `/ __/  '_/   /___/ .__/\_,_/_/ /_/\_\   version 3.5.7      /_/
Using Scala version 2.12.18 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_144)Type in expressions to have them evaluated.Type :help for more information.
scala> sc.textFile("/tmp/wqg.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_ + _).collectres0: Array[(String, Int)] = Array((16:07:50,243,2), (15:38:53,698,4), (15:20:03,258,2), (15:39:46,035,1), (15:50:34,501,4), (15:43:54,365,2), (16:12:00,567,2), (15:27:26,953,4), (16:13:23,677,4), (16:13:08,656,4), (15:36:57,946,2), (15:55:30,218,2), (15:48:41,009,4), (15:53:15,033,2), (15:53:50,076,4), (15:34:18,110,3), (15:21:56,442,4), (15:36:58,947,4), (15:08:51,130,4), (15:54:27,125,1), (16:07:38,229,2), (15:42:32,881,2), (15:58:28,461,2), (15:23:33,591,4), (15:10:53,351,2), (16:15:33,856,2), (15:12:37,531,2), (15:29:32,402,2), (16:08:03,626,1), (15:46:44,408,2), (15:55:38,227,2), (15:55:54,252,2), (15:32:41,569,1), (15:30:50,899,2), (16:12:14,584,2), (15:38:32,596,1), (15:05:54,815,3), (15:13:09,586,2), (15:17:46,039,2), (16:05:18,014,3), (16:12:02,569,2)...
相关推荐
Gofarlic_oms11 天前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
Zoey的笔记本1 天前
2026告别僵化工作流:支持自定义字段的看板工具选型与部署指南
大数据·前端·数据库
lingling0091 天前
2026 年 BI 发展新趋势:AI 功能如何让数据分析工具 “思考” 和 “对话”?
大数据·人工智能·数据分析
鹧鸪云光伏1 天前
光伏项目多,如何高效管理?
大数据·人工智能·光伏
Acrel187021067061 天前
浅谈电气防火限流保护器设计在消防安全中的应用价值
大数据·网络
赵谨言1 天前
Python串口的三相交流电机控制系统研究
大数据·开发语言·经验分享·python
汇智信科1 天前
智慧矿山 & 工业大数据创新解决方案 —— 智能能源管理系统
大数据·能源·智慧矿山·工业大数据·汇智信科·智能能源管理系统·多元维度
企业对冲系统官1 天前
基差风险管理系统日志分析功能的架构与实现
大数据·网络·数据库·算法·github·动态规划
忍冬行者1 天前
Elasticsearch 超大日志流量集群搭建(网关 + 独立 Master + 独立 Data 纯生产架构,角色完全分离,百万级日志吞吐)
大数据·elasticsearch·云原生·架构·云计算
阿坤带你走近大数据1 天前
如何解决农业数据的碎片化问题
大数据·人工智能·rag·大模型应用