opencv灰度变换

图像处理中的灰度反转、对数变换和幂律(伽马)变换是一些常见的技术,主要用于图像增强、对比度调整以及特定场景的图像预处理。下面详细介绍这些技术的使用场景,并给出对应的C++代码示例。

灰度反转(Negative Transformation)

使用场景
  • 医学图像处理: 增强X光片或MRI图像的对比度。
  • 遥感图像: 反转地形图或卫星图像中的颜色,便于特定特征的分析。
  • 摄影艺术: 创造特殊的视觉效果。
实现方法

灰度反转的公式为:

g(x,y) = 255 - f(x,y)

其中 ( f(x,y) ) 是原始图像的像素值,( g(x,y) ) 是反转后的像素值。

对数变换(Log Transformation)

使用场景
  • 增强低灰度值: 提高图像中暗部细节的对比度。
  • 图像压缩: 压缩图像的动态范围,特别是用于科学数据的可视化(如频谱图)。
实现方法

对数变换的公式为:

g(x,y) = c \\cdot \\log(1 + f(x,y))

其中 ( c ) 是常数,一般取值为 1。

幂律(伽马)变换(Power-Law (Gamma) Transformation)

使用场景
  • 图像增强: 调整图像的亮度和对比度。
  • 显示设备校正: 修正显示器或打印机的非线性响应。
  • 医学图像处理: 改善CT扫描或MRI图像的可视化效果。
实现方法

伽马变换的公式为:

g(x,y) = c \\cdot f(x,y)\^\\gamma

其中 ( c ) 是常数,通常为 1,( \gamma ) 是伽马值,控制图像的对比度。

C++ 代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <cmath>

void invertImage(const cv::Mat& src, cv::Mat& dst) {
    dst = 255 - src;
}

void logTransform(const cv::Mat& src, cv::Mat& dst) {
    cv::Mat srcFloat;
    src.convertTo(srcFloat, CV_32F);
    dst = srcFloat.clone();
    dst += 1;
    cv::log(dst, dst);
    cv::normalize(dst, dst, 0, 255, cv::NORM_MINMAX);
    dst.convertTo(dst, CV_8U);
}

void gammaTransform(const cv::Mat& src, cv::Mat& dst, double gamma) {
    cv::Mat srcFloat;
    src.convertTo(srcFloat, CV_32F);
    cv::normalize(srcFloat, srcFloat, 0, 1, cv::NORM_MINMAX);
    cv::pow(srcFloat, gamma, dst);
    cv::normalize(dst, dst, 0, 255, cv::NORM_MINMAX);
    dst.convertTo(dst, CV_8U);
}

int main() {
    // 读取图像
    cv::Mat image = cv::imread("path_to_image.jpg", cv::IMREAD_GRAYSCALE);
    if (image.empty()) {
        std::cerr << "Could not open or find the image!" << std::endl;
        return -1;
    }

    // 灰度反转
    cv::Mat invertedImage;
    invertImage(image, invertedImage);

    // 对数变换
    cv::Mat logImage;
    logTransform(image, logImage);

    // 幂律(伽马)变换
    cv::Mat gammaImage;
    double gamma = 2.2; // 伽马值,可以根据需要调整
    gammaTransform(image, gammaImage, gamma);

    // 显示图像
    cv::imshow("Original Image", image);
    cv::imshow("Inverted Image", invertedImage);
    cv::imshow("Log Transformed Image", logImage);
    cv::imshow("Gamma Transformed Image", gammaImage);

    // 保存图像
    cv::imwrite("inverted_image.jpg", invertedImage);
    cv::imwrite("log_transformed_image.jpg", logImage);
    cv::imwrite("gamma_transformed_image.jpg", gammaImage);

    // 等待按键按下
    cv::waitKey(0);

    return 0;
}

代码解释

  1. 灰度反转:

    • 使用简单的矩阵操作 255 - src 进行反转。
  2. 对数变换:

    • 将图像转换为浮点型以进行精确计算。
    • 加1以避免对数变换中的对数零问题。
    • 应用对数变换并归一化图像。
  3. 伽马变换:

    • 将图像转换为浮点型并归一化到0-1范围。
    • 应用伽马变换公式并重新归一化到0-255范围。
  4. 读取和显示图像:

    • 读取图像,应用各种变换,并使用cv::imshow函数显示结果。
    • 保存结果图像以供后续使用。

通过这些变换,你可以有效地增强图像的细节,改善视觉效果。

相关推荐
递归不收敛19 分钟前
专属虚拟环境:Hugging Face数据集批量下载(无登录+国内加速)完整指南
人工智能·笔记·git·python·学习·pycharm
qq_271581791 小时前
Ubuntu OpenCV C++ 获取Astra Pro摄像头图像
人工智能·opencv·计算机视觉
电鱼智能的电小鱼2 小时前
基于电鱼 ARM 工控机的井下AI故障诊断方案——让煤矿远程监控更智能、更精准
网络·arm开发·人工智能·算法·边缘计算
拉姆哥的小屋2 小时前
时间序列早期分类中的置信度累积问题:从ECE-C到时序依赖建模
大数据·人工智能
蚁巡信息巡查系统2 小时前
政府网站与政务新媒体监测服务主要是做什么的?
大数据·人工智能
林恒smileZAZ2 小时前
移动端h5适配方案
人工智能·python·tensorflow
伟贤AI之路2 小时前
开源!纯 HTML 实现支持 0.75~2× 变速、iOS 熄屏防中断的英语点读站
人工智能·ai编程
编码时空的诗意行者2 小时前
LM实现教程:基于 nanochat项目 从零开始理解大语言模型
人工智能·语言模型·自然语言处理
兔兔爱学习兔兔爱学习2 小时前
ASR+MT+LLM+TTS 一体化实时翻译字幕系统
人工智能·自然语言处理·机器翻译
二向箔reverse2 小时前
用langchain搭建简单agent
人工智能·python·langchain