Transformer动画讲解:注意力计算Q、K、V

暑期实习基本结束了,校招即将开启。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。提前准备才是完全之策。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结链接如下:


Transformer的起源:Google Brain 翻译团队通过论文《Attention is all you need》提出了一种全新的简单网络架构------Transformer,它完全基于注意力机制,摒弃了循环和卷积操作。

注意力机制是全部所需

正如论文标题所言"注意力机制是全部所需",强调了注意力机制是Transformer架构的核心要素,就如同人的心脏一样,充当着发动机的作用。

注意力计算Q、K、V

Transformer 注意力计算公式

权重矩阵W:W_Q、W_K和W_V

  • 权重矩阵W是可训练的参数,其维度为(d_model, d_k),其中d_model是输入嵌入的维度,d_k是Q/K/V向量的维度。通过训练,模型会学习到如何从输入数据中提取出对任务有用的特征,并将其映射到Q、K、V向量中

  • 初始时,这些权重矩阵的值通常是随机初始化的。经过训练后,它们会学习到如何从输入数据中提取出对任务有用的特征。

  • 模型会通过反向传播算法和梯度下降来更新这些权重矩阵W的值,以最小化某个损失函数(如交叉熵损失)。

权重矩阵W_Q计算Query(Q):在Transformer模型中,Query(Q)是通过将输入数据的嵌入矩阵E与权重矩阵W_Q相乘得到的。

  • 权重矩阵W_Q的定义:

    • 在Transformer模型中,权重矩阵W是用于将输入数据(如词嵌入)映射到Q、K、V(Query、Key、Value)向量的线性变换矩阵。对于Query(Q),有一个专门的权重矩阵W_Q。

    • W_Q的维度通常是(d_model, d_k),其中d_model是输入嵌入的维度(也是模型的维度),而d_k是Q/K/V向量的维度。假设d_k被设定为128。

  • 计算Query(Q):

    • 给定输入序列的嵌入矩阵E(形状为(batch_size, sequence_length, d_model)),Query矩阵Q是通过将X与权重矩阵W_Q相乘得到的。

    • 具体地,对于Q中的每一个嵌入向量q_i(形状为(d_model)),Q中的一个向量q_i可以通过q_i = e_i * W_Q计算得到。

    • 因此,整个Query矩阵Q(形状为(batch_size, sequence_length, d_k))可以通过E * W_Q计算得到。‍

计算Q(Query)

权重矩阵W_K计算Key(K):在Transformer模型中,Key(K)是通过将输入数据的嵌入矩阵E与权重矩阵W_K相乘得到的。

  • 权重矩阵W_K的定义:

    • 在Transformer模型中,权重矩阵W_K也是一个可训练的权重矩阵,用于将输入数据的嵌入映射到Key向量(K)。

    • W_K的维度通常是(d_model, d_k),其中d_model是输入嵌入的维度(也是Transformer模型的维度),d_k是Key向量的维度。假设d_k被设定为128。

  • 计算Key(K):

    • 给定输入序列的嵌入矩阵E(形状为(batch_size, sequence_length, d_model)),Key矩阵K是通过将E与权重矩阵W_K相乘得到的。

    • 具体地,对于K中的每一个嵌入向量k_i(形状为(d_model)),K中的一个向量k_i可以通过k_i = e_i * W_K计算得到。

    • 因此,整个Key矩阵K(形状为(batch_size, sequence_length, d_k))可以通过X * W_K计算得到。

计算K(Key)

权重矩阵W_V计算Value(V):在Transformer模型中,Value(V)是通过将输入数据的嵌入矩阵E与权重矩阵W_V相乘得到的。

  • 权重矩阵W_V的定义:

    • 在Transformer模型中,权重矩阵W_V也是一个可训练的权重矩阵,用于将输入数据的嵌入映射到Value向量(V)。

    • W_V的维度通常是(d_model, d_v),其中d_model是输入嵌入的维度(也是Transformer模型的维度),d_v是Value向量的维度。假设d_k被设定为128。

  • 计算Value(V):

    • 给定输入序列的嵌入矩阵E(形状为(batch_size, sequence_length, d_model)),Value矩阵V是通过将E与权重矩阵W_V相乘得到的。

    • 具体地,对于E中的每一个嵌入向量e_i(形状为(d_model)),V中的一个向量v_i可以通过v_i = e_i * W_V计算得到。

    • 因此,整个Value矩阵V(形状为(batch_size, sequence_length, d_v))可以通过E * W_V计算得到。

计算V(Value)

Q、K、V计算:Q用于查询,K用于匹配,V提供被加权的信息。通过计算Q和K的点积来衡量注意力分数,进而决定V的加权方式。

Q(query)、K(Key)、V(Value)计算

相关推荐
zy_destiny4 分钟前
【工业场景】用YOLOv8实现人员打电话识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪
刘海东刘海东5 分钟前
结构型智能科技理论研究(草稿)
科技·算法
Mintopia9 分钟前
🎨 数据增强技术在 AIGC 训练中的应用:提升 Web 生成的多样性
前端·javascript·aigc
C嘎嘎嵌入式开发16 分钟前
(10)100天python从入门到拿捏《Python中的数据结构与自定义数据结构》
数据结构·python·算法
熬了夜的程序员17 分钟前
【LeetCode】69. x 的平方根
开发语言·算法·leetcode·职场和发展·动态规划
zzZ656518 分钟前
PyTorch 实现 MNIST 手写数字识别全流程
pytorch·深度学习
feixiangyuncai25 分钟前
Bentley软件迎新任首席营销官,驱动AI营销新动力
人工智能·智慧城市·能源·交通物流
Niuguangshuo25 分钟前
音频特征提取算法介绍
算法·音视频
CoderLemon25 分钟前
告别重复编码:Claude Code 自动化开发全流程详解——启航篇-00
人工智能·claude
MARS_AI_32 分钟前
云蝠智能VoiceAgent 9月升级概览:从功能交互到用户体验
人工智能·自然语言处理·交互·信息与通信·agi