暑期实习基本结束了,校招即将开启。
不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。提前准备才是完全之策。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
总结链接如下:
Transformer的起源:Google Brain 翻译团队通过论文《Attention is all you need》提出了一种全新的简单网络架构------Transformer,它完全基于注意力机制,摒弃了循环和卷积操作。
注意力机制是全部所需
正如论文标题所言"注意力机制是全部所需",强调了注意力机制是Transformer架构的核心要素,就如同人的心脏一样,充当着发动机的作用。
注意力计算Q、K、V
Transformer 注意力计算公式
权重矩阵W:W_Q、W_K和W_V
-
权重矩阵W是可训练的参数,其维度为(d_model, d_k),其中d_model是输入嵌入的维度,d_k是Q/K/V向量的维度。通过训练,模型会学习到如何从输入数据中提取出对任务有用的特征,并将其映射到Q、K、V向量中
-
初始时,这些权重矩阵的值通常是随机初始化的。经过训练后,它们会学习到如何从输入数据中提取出对任务有用的特征。
-
模型会通过反向传播算法和梯度下降来更新这些权重矩阵W的值,以最小化某个损失函数(如交叉熵损失)。
权重矩阵W_Q计算Query(Q):在Transformer模型中,Query(Q)是通过将输入数据的嵌入矩阵E与权重矩阵W_Q相乘得到的。
-
权重矩阵W_Q的定义:
-
在Transformer模型中,权重矩阵W是用于将输入数据(如词嵌入)映射到Q、K、V(Query、Key、Value)向量的线性变换矩阵。对于Query(Q),有一个专门的权重矩阵W_Q。
-
W_Q的维度通常是(d_model, d_k),其中d_model是输入嵌入的维度(也是模型的维度),而d_k是Q/K/V向量的维度。假设d_k被设定为128。
-
-
计算Query(Q):
-
给定输入序列的嵌入矩阵E(形状为(batch_size, sequence_length, d_model)),Query矩阵Q是通过将X与权重矩阵W_Q相乘得到的。
-
具体地,对于Q中的每一个嵌入向量q_i(形状为(d_model)),Q中的一个向量q_i可以通过q_i = e_i * W_Q计算得到。
-
因此,整个Query矩阵Q(形状为(batch_size, sequence_length, d_k))可以通过E * W_Q计算得到。
-
计算Q(Query)
权重矩阵W_K计算Key(K):在Transformer模型中,Key(K)是通过将输入数据的嵌入矩阵E与权重矩阵W_K相乘得到的。
-
权重矩阵W_K的定义:
-
在Transformer模型中,权重矩阵W_K也是一个可训练的权重矩阵,用于将输入数据的嵌入映射到Key向量(K)。
-
W_K的维度通常是(d_model, d_k),其中d_model是输入嵌入的维度(也是Transformer模型的维度),d_k是Key向量的维度。假设d_k被设定为128。
-
-
计算Key(K):
-
给定输入序列的嵌入矩阵E(形状为(batch_size, sequence_length, d_model)),Key矩阵K是通过将E与权重矩阵W_K相乘得到的。
-
具体地,对于K中的每一个嵌入向量k_i(形状为(d_model)),K中的一个向量k_i可以通过k_i = e_i * W_K计算得到。
-
因此,整个Key矩阵K(形状为(batch_size, sequence_length, d_k))可以通过X * W_K计算得到。
-
计算K(Key)
权重矩阵W_V计算Value(V):在Transformer模型中,Value(V)是通过将输入数据的嵌入矩阵E与权重矩阵W_V相乘得到的。
-
权重矩阵W_V的定义:
-
在Transformer模型中,权重矩阵W_V也是一个可训练的权重矩阵,用于将输入数据的嵌入映射到Value向量(V)。
-
W_V的维度通常是(d_model, d_v),其中d_model是输入嵌入的维度(也是Transformer模型的维度),d_v是Value向量的维度。假设d_k被设定为128。
-
-
计算Value(V):
-
给定输入序列的嵌入矩阵E(形状为(batch_size, sequence_length, d_model)),Value矩阵V是通过将E与权重矩阵W_V相乘得到的。
-
具体地,对于E中的每一个嵌入向量e_i(形状为(d_model)),V中的一个向量v_i可以通过v_i = e_i * W_V计算得到。
-
因此,整个Value矩阵V(形状为(batch_size, sequence_length, d_v))可以通过E * W_V计算得到。
-
计算V(Value)
Q、K、V计算:Q用于查询,K用于匹配,V提供被加权的信息。通过计算Q和K的点积来衡量注意力分数,进而决定V的加权方式。
Q(query)、K(Key)、V(Value)计算