矩阵相乘torch.einsum()

einsumEinstein summation 的缩写,来源于爱因斯坦求和约定(Einstein summation convention)。这是物理学家阿尔伯特·爱因斯坦引入的一种简便记号,用于描述张量运算,特别是涉及多维数组的运算。

示例1:矩阵乘法

矩阵乘法 C=AB

python 复制代码
A = torch.randn(2, 3)
B = torch.randn(3, 4)
C = torch.einsum('ik,kj->ij', A, B)
print(C.size())  # 输出: torch.Size([2, 4])

这里,'ik,kj->ij' 的含义是:

  • A 的形状为 (2, 3),对应 ikik 分别表示第一个和第二个维度。
  • B 的形状为 (3, 4),对应 kjkj 分别表示第一个和第二个维度。
  • ->ij 表示输出张量的模式,结果为 (2, 4)
示例2:向量点积

向量点积 c=a⋅b

python 复制代码
a = torch.randn(3)
b = torch.randn(3)
c = torch.einsum('i,i->', a, b)
print(c.size())  # 输出: torch.Size([])

这里,'i,i->' 的含义是:

  • ab 都是向量,对应模式 i
  • -> 后面为空,表示结果是一个标量。
示例3:批量矩阵乘法

批量矩阵乘法

python 复制代码
A = torch.randn(10, 2, 3)
B = torch.randn(10, 3, 4)
C = torch.einsum('bij,bjk->bik', A, B)
print(C.size())  # 输出: torch.Size([10, 2, 4])

这里,'bij,bjk->bik' 的含义是:

  • A 的形状为 (10, 2, 3),对应 bijb 表示批次维度,ij 分别表示矩阵的行和列。
  • B 的形状为 (10, 3, 4),对应 bjkb 表示批次维度,jk 分别表示矩阵的行和列。
  • ->bik 表示输出张量的模式,结果为 (10, 2, 4)

示例4:逐元素相乘(哈达玛积)A.B或A × B

python 复制代码
A = torch.randn(3, 4)
B = torch.randn(3, 4)

C = torch.einsum('ij,ij->ij', A, B)
print(C.size())  # 输出: torch.Size([3, 4])

'ij,ij->ij' 表示:

  • AB 都是形状为 [3, 4] 的矩阵,用 ij 表示。
  • 结果 C 也是形状为 [3, 4] 的矩阵。
  • 没有重复索引,所以不进行求和。
相关推荐
说私域7 分钟前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木20 分钟前
AI 编程工具 Trae 重要的升级。。。
人工智能
码字的字节21 分钟前
深度学习损失函数的设计哲学:从交叉熵到Huber损失的深入探索
深度学习·交叉熵·huber
凪卄121340 分钟前
图像预处理 二
人工智能·python·深度学习·计算机视觉·pycharm
碳酸的唐1 小时前
Inception网络架构:深度学习视觉模型的里程碑
网络·深度学习·架构
AI赋能1 小时前
自动驾驶训练-tub详解
人工智能·深度学习·自动驾驶
seasonsyy1 小时前
1.安装anaconda详细步骤(含安装截图)
python·深度学习·环境配置
deephub1 小时前
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
人工智能·深度学习·神经网络·langchain·大语言模型·rag
EulerBlind1 小时前
【运维】SGLang 安装指南
运维·人工智能·语言模型
心之语歌1 小时前
Spring AI MCP 客户端
人工智能·spring·github