矩阵相乘torch.einsum()

einsumEinstein summation 的缩写,来源于爱因斯坦求和约定(Einstein summation convention)。这是物理学家阿尔伯特·爱因斯坦引入的一种简便记号,用于描述张量运算,特别是涉及多维数组的运算。

示例1:矩阵乘法

矩阵乘法 C=AB

python 复制代码
A = torch.randn(2, 3)
B = torch.randn(3, 4)
C = torch.einsum('ik,kj->ij', A, B)
print(C.size())  # 输出: torch.Size([2, 4])

这里,'ik,kj->ij' 的含义是:

  • A 的形状为 (2, 3),对应 ikik 分别表示第一个和第二个维度。
  • B 的形状为 (3, 4),对应 kjkj 分别表示第一个和第二个维度。
  • ->ij 表示输出张量的模式,结果为 (2, 4)
示例2:向量点积

向量点积 c=a⋅b

python 复制代码
a = torch.randn(3)
b = torch.randn(3)
c = torch.einsum('i,i->', a, b)
print(c.size())  # 输出: torch.Size([])

这里,'i,i->' 的含义是:

  • ab 都是向量,对应模式 i
  • -> 后面为空,表示结果是一个标量。
示例3:批量矩阵乘法

批量矩阵乘法

python 复制代码
A = torch.randn(10, 2, 3)
B = torch.randn(10, 3, 4)
C = torch.einsum('bij,bjk->bik', A, B)
print(C.size())  # 输出: torch.Size([10, 2, 4])

这里,'bij,bjk->bik' 的含义是:

  • A 的形状为 (10, 2, 3),对应 bijb 表示批次维度,ij 分别表示矩阵的行和列。
  • B 的形状为 (10, 3, 4),对应 bjkb 表示批次维度,jk 分别表示矩阵的行和列。
  • ->bik 表示输出张量的模式,结果为 (10, 2, 4)

示例4:逐元素相乘(哈达玛积)A.B或A × B

python 复制代码
A = torch.randn(3, 4)
B = torch.randn(3, 4)

C = torch.einsum('ij,ij->ij', A, B)
print(C.size())  # 输出: torch.Size([3, 4])

'ij,ij->ij' 表示:

  • AB 都是形状为 [3, 4] 的矩阵,用 ij 表示。
  • 结果 C 也是形状为 [3, 4] 的矩阵。
  • 没有重复索引,所以不进行求和。
相关推荐
科兽的AI小记10 小时前
市面上的开源 AI 智能体平台使用体验
人工智能·源码·创业
云雾J视界11 小时前
开源协作2.0:GitHub Discussions+AI重构开发者社区的知识共创生态
人工智能·开源·github·discussions·知识共创·社区知识·ai重构
橘子海全栈攻城狮11 小时前
【源码+文档+调试讲解】基于SpringBoot + Vue的知识产权管理系统 041
java·vue.js·人工智能·spring boot·后端·安全·spring
赋范大模型技术社区11 小时前
OpenAI Agent Kit 全网首发深度解读与上手指南
人工智能·workflow·内置评估
阿里云大数据AI技术11 小时前
云栖实录 | AI 搜索智能探索:揭秘如何让搜索“有大脑”
人工智能·搜索引擎
可触的未来,发芽的智生11 小时前
新奇特:神经网络速比器,小镇债务清零的算法奇缘
javascript·人工智能·python
Aaplloo11 小时前
机器学习作业七
人工智能·机器学习
2501_9065196711 小时前
面向边缘计算的轻量化神经网络架构设计与优化
人工智能
mortimer11 小时前
还在被 Windows 路径的大小写和正反斜杠坑?是时候让 pathlib 拯救你的代码了!
人工智能·python
苍何11 小时前
3个月圈粉百万,这个AI应用在海外火了
人工智能