qmt量化交易策略小白学习笔记第18期【qmt编程之获取对应周期的北向南向数据--方式2:原生python】

qmt编程之获取对应周期的北向南向数据

qmt更加详细的教程方法,会持续慢慢梳理。

也可找寻博主的历史文章,搜索关键词查看解决方案 !

获取对应周期的北向南向数据

提示

  1. 该数据通过get_market_data_ex接口获取
  2. 获取历史数据前需要先用download_history_data下载历史数据,可选字段为"northfinancechange1m":一分钟周期北向数据,"northfinancechange1d":日线周期北向数据
  3. VIP权限数据

方式2:原生python

原生python

复制代码
xtdata.get_market_data_ex(
    fields=[], 
    stock_code=[], 
    period='follow', 
    start_time='', 
    end_time='', 
    count=-1, 
    dividend_type='follow', 
    fill_data=True, 
    subscribe=True
    )

参数

名称 类型 描述
field list 取北向数据时填写为[]空列表即可
stock_list list 合约代码列表
period str 数据周期,可选字段为: "northfinancechange1m":一分钟周期北向数据 "northfinancechange1d":日线周期北向数据
start_time str 数据起始时间,格式为 %Y%m%d%Y%m%d%H%M%S,填""为获取历史最早一天
end_time str 数据结束时间,格式为 %Y%m%d%Y%m%d%H%M%S ,填""为截止到最新一天
count int 数据个数
dividend_type str 除权方式,可选值为 'none':不复权 'front':前复权 'back':后复权 'front_ratio': 等比前复权 'back_ratio': 等比后复权 取此数据时不生效
fill_data bool 是否填充数据
subscribe bool 订阅数据开关,默认为True,设置为False时不做数据订阅,只读取本地已有数据。

返回值

返回一个 {stock_code:pd.DataFrame} 结构的dict对象,

示例2 通过原生python获取:

示例

复制代码
# 该示例演示token获取数据方式
from xtquant import xtdatacenter as xtdc

import xtquant.xtdata as xtdata

xtdc.set_token('用户token')
xtdc.init()

s = 'FFFFFF.SGT' # 北向资金代码
period = 'northfinancechange1m' # 数据周期
if 1:
    print('download')
    xtdata.download_history_data(s, period, '20231101', '')
    print('done')

data = xtdata.get_market_data_ex([], [s], period, '', '')[s]
print(data)

返回值

复制代码
	time	HGT北向买入资金	HGT北向卖出资金	HGT南向买入资金	HGT南向卖出资金	SGT北向买入资金	SGT北向卖出资金	SGT南向买入资金	SGT南向卖出资金	HGT北向资金净流入	HGT北向当日资金余额	HGT南向资金净流入	HGT南向当日资金余额	SGT北向资金净流入	SGT北向当日资金余额	SGT南向资金净流入	SGT南向当日资金余额
0	1679619600000	0	0	0	0	0	0	0	0	0	52000000000	56482000	41943518000	0	52000000000	38749800	41961250199
1	1679619660000	0	0	0	0	0	0	0	0	0	52000000000	79933000	41920067000	0	52000000000	47571600	41952428400
2	1679619720000	0	0	0	0	0	0	0	0	0	52000000000	104898100	41895101900	0	52000000000	66697000	41933303000
3	1679619780000	0	0	0	0	0	0	0	0	0	52000000000	112106000	41887894000	0	52000000000	80038500	41919961500
4	1679619840000	0	0	0	0	0	0	0	0	0	52000000000	120973900	41879026200	0	52000000000	110223100	41889776900
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
52802	1699517160000	25931289200	23761060600	7192241300	4497273400	31224095900	33457685500	6649753700	4381821900	3487650300	48512349700	3561839099	38438160900	-956425200	52956425199	2952439099	39047560900
52803	1699517220000	25931289200	23761060600	7192241300	4497273400	31224095900	33457685500	6649753700	4381821900	3487650300	48512349700	3573462800	38426537200	-956425200	52956425199	2953814300	39046185700
52804	1699517280000	25931289200	23761060600	7192241300	4497273400	31224095900	33457685500	6649753700	4381821900	3487650300	48512349700	3550669400	38449330600	-956425200	52956425199	2934226100	39065773900
52805	1699517340000	25931289200	23761060600	7257519800	4531832900	31224095900	33457685500	6717744000	4402893900	3487650300	48512349700	3550669400	38449330600	-956425200	52956425199	2934226100	39065773900
52806	1699517400000	25931289200	23761060600	7257519800	4531832900	31224095900	33457685500	6717744000	4402893900	3487650300	48512349700	3550669400	38449330600	-956425200	52956425199	2934226100	39065773900
52807 rows × 17 columns
相关推荐
岁忧4 小时前
GoLang五种字符串拼接方式详解
开发语言·爬虫·golang
tyatyatya4 小时前
MATLAB基础数据类型教程:数值型/字符型/逻辑型/结构体/元胞数组全解析
开发语言·matlab
东哥说-MES|从入门到精通4 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
程序员小远4 小时前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
万岳软件开发小城4 小时前
教育APP/小程序开发标准版图:课程、题库、直播、学习一站式梳理
大数据·php·uniapp·在线教育系统源码·教育app开发·教育软件开发
心无旁骛~5 小时前
python多进程和多线程问题
开发语言·python
星云数灵5 小时前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
kaikaile19955 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
计算机毕设匠心工作室5 小时前
【python大数据毕设实战】青少年抑郁症风险数据分析可视化系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习
后端·python
计算机毕设小月哥5 小时前
【Hadoop+Spark+python毕设】智能制造生产效能分析与可视化系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql