qmt量化交易策略小白学习笔记第18期【qmt编程之获取对应周期的北向南向数据--方式2:原生python】

qmt编程之获取对应周期的北向南向数据

qmt更加详细的教程方法,会持续慢慢梳理。

也可找寻博主的历史文章,搜索关键词查看解决方案 !

获取对应周期的北向南向数据

提示

  1. 该数据通过get_market_data_ex接口获取
  2. 获取历史数据前需要先用download_history_data下载历史数据,可选字段为"northfinancechange1m":一分钟周期北向数据,"northfinancechange1d":日线周期北向数据
  3. VIP权限数据

方式2:原生python

原生python

复制代码
xtdata.get_market_data_ex(
    fields=[], 
    stock_code=[], 
    period='follow', 
    start_time='', 
    end_time='', 
    count=-1, 
    dividend_type='follow', 
    fill_data=True, 
    subscribe=True
    )

参数

名称 类型 描述
field list 取北向数据时填写为[]空列表即可
stock_list list 合约代码列表
period str 数据周期,可选字段为: "northfinancechange1m":一分钟周期北向数据 "northfinancechange1d":日线周期北向数据
start_time str 数据起始时间,格式为 %Y%m%d%Y%m%d%H%M%S,填""为获取历史最早一天
end_time str 数据结束时间,格式为 %Y%m%d%Y%m%d%H%M%S ,填""为截止到最新一天
count int 数据个数
dividend_type str 除权方式,可选值为 'none':不复权 'front':前复权 'back':后复权 'front_ratio': 等比前复权 'back_ratio': 等比后复权 取此数据时不生效
fill_data bool 是否填充数据
subscribe bool 订阅数据开关,默认为True,设置为False时不做数据订阅,只读取本地已有数据。

返回值

返回一个 {stock_code:pd.DataFrame} 结构的dict对象,

示例2 通过原生python获取:

示例

复制代码
# 该示例演示token获取数据方式
from xtquant import xtdatacenter as xtdc

import xtquant.xtdata as xtdata

xtdc.set_token('用户token')
xtdc.init()

s = 'FFFFFF.SGT' # 北向资金代码
period = 'northfinancechange1m' # 数据周期
if 1:
    print('download')
    xtdata.download_history_data(s, period, '20231101', '')
    print('done')

data = xtdata.get_market_data_ex([], [s], period, '', '')[s]
print(data)

返回值

复制代码
	time	HGT北向买入资金	HGT北向卖出资金	HGT南向买入资金	HGT南向卖出资金	SGT北向买入资金	SGT北向卖出资金	SGT南向买入资金	SGT南向卖出资金	HGT北向资金净流入	HGT北向当日资金余额	HGT南向资金净流入	HGT南向当日资金余额	SGT北向资金净流入	SGT北向当日资金余额	SGT南向资金净流入	SGT南向当日资金余额
0	1679619600000	0	0	0	0	0	0	0	0	0	52000000000	56482000	41943518000	0	52000000000	38749800	41961250199
1	1679619660000	0	0	0	0	0	0	0	0	0	52000000000	79933000	41920067000	0	52000000000	47571600	41952428400
2	1679619720000	0	0	0	0	0	0	0	0	0	52000000000	104898100	41895101900	0	52000000000	66697000	41933303000
3	1679619780000	0	0	0	0	0	0	0	0	0	52000000000	112106000	41887894000	0	52000000000	80038500	41919961500
4	1679619840000	0	0	0	0	0	0	0	0	0	52000000000	120973900	41879026200	0	52000000000	110223100	41889776900
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
52802	1699517160000	25931289200	23761060600	7192241300	4497273400	31224095900	33457685500	6649753700	4381821900	3487650300	48512349700	3561839099	38438160900	-956425200	52956425199	2952439099	39047560900
52803	1699517220000	25931289200	23761060600	7192241300	4497273400	31224095900	33457685500	6649753700	4381821900	3487650300	48512349700	3573462800	38426537200	-956425200	52956425199	2953814300	39046185700
52804	1699517280000	25931289200	23761060600	7192241300	4497273400	31224095900	33457685500	6649753700	4381821900	3487650300	48512349700	3550669400	38449330600	-956425200	52956425199	2934226100	39065773900
52805	1699517340000	25931289200	23761060600	7257519800	4531832900	31224095900	33457685500	6717744000	4402893900	3487650300	48512349700	3550669400	38449330600	-956425200	52956425199	2934226100	39065773900
52806	1699517400000	25931289200	23761060600	7257519800	4531832900	31224095900	33457685500	6717744000	4402893900	3487650300	48512349700	3550669400	38449330600	-956425200	52956425199	2934226100	39065773900
52807 rows × 17 columns
相关推荐
旷世奇才李先生几秒前
PyCharm 安装使用教程
ide·python·pycharm
阿蒙Amon7 分钟前
C#扩展方法全解析:给现有类型插上翅膀的魔法
开发语言·c#
丰锋ff15 分钟前
计网学习笔记第2章 物理层(灰灰题库)
笔记·学习
这里有鱼汤22 分钟前
“对象”?对象你个头!——Python世界观彻底崩塌的一天
后端·python
尘浮72831 分钟前
60天python训练计划----day59
开发语言·python
wh393335 分钟前
使用Python将PDF转换成word、PPT
python·pdf·word
船长@Quant1 小时前
数学视频动画引擎Python库 -- Manim Voiceover 语音服务 Speech Services
python·数学·manim·动画引擎·语音旁白
Chef_Chen1 小时前
从0开始学习R语言--Day39--Spearman 秩相关
开发语言·学习·r语言
不学会Ⅳ1 小时前
Mac M芯片搭建jdk源码环境(jdk24)
java·开发语言·macos
好开心啊没烦恼2 小时前
Python 数据分析:计算,分组统计1,df.groupby()。听故事学知识点怎么这么容易?
开发语言·python·数据挖掘·数据分析·pandas