『SD』场景变换魔法:InstructP2P控制类型助你一键换天气

点赞 + 关注 + 收藏 = 学会了

本文简介

InstructP2P 控制类型是 ControlNet 插件中的一个强大功能,InstructP2P 的主要能力是实现场景转换,风格迁移。

先来看看这个例子。

我将绫波丽的形象从她原本身着机甲、在夜空下站着的场景,转换到春意盎然的环境中,四周环绕着绽放的花朵和嫩绿的新叶。

动手操作

实现场景转换需要用到 InstructP2P 这个 ControlNet 的控制类型。而 ControlNet 又是 Stable Diffusion 的插件。所以你需要在你的 SD 里安装 ControlNet 插件。关于这个插件的安装和基础用法,可以看看 《『SD』ControlNet基础讲解》 这篇文章。

当你的 SD 安装好 ControlNet 后,需要到 huggingface 下载 control_v11e_sd15_ip2p 模型。下载链接我放在这里:huggingface.co/lllyasviel/...

control_v11e_sd15_ip2p.pth 下载好之后,将它放在 SD 的这个目录下: sd.webui\webui\models\ControlNet

然后启动 SD,启动 ControlNet,上传一张图片,并将该图片的尺寸发送到生成设置。接着将控制类型选择 InstructP2P

模型选择刚刚下载好的 control_v11e_sd15_ip2p (红框部分)。

黄框部分从左到右的选项分别是"控制权重"、"介入时机"、"终止时机",这个在 《『SD』ControlNet基础讲解》 里有介绍过。根据你的图片调整好参数,通常需要多次试验不同的权重和时机的值。

最后最后,回到页面上方,选择一个模型,然后输入提示词。

这里的提示词一定要使用这个语法:

MAKE it xxx

这里的 xxx 指的是你要实现的效果。

比如在我这个例子中,我要让场景变成春天,就需要这么写提示词 MAKE it spring

最后点击"Generate"按钮生成图片。

如果对生成结果不满意,记得调整一下 ControlNet 里的控制权重以及介入和终止时机。

多抽几张卡,抽到满意为止。

下面这张是原图,喜欢绫波丽的工友自取。


点赞 + 关注 + 收藏 = 学会了

相关推荐
古希腊掌管学习的神8 分钟前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI36 分钟前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长1 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME2 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室3 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself3 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董3 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee3 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa3 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐3 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类