『SD』场景变换魔法:InstructP2P控制类型助你一键换天气

点赞 + 关注 + 收藏 = 学会了

本文简介

InstructP2P 控制类型是 ControlNet 插件中的一个强大功能,InstructP2P 的主要能力是实现场景转换,风格迁移。

先来看看这个例子。

我将绫波丽的形象从她原本身着机甲、在夜空下站着的场景,转换到春意盎然的环境中,四周环绕着绽放的花朵和嫩绿的新叶。

动手操作

实现场景转换需要用到 InstructP2P 这个 ControlNet 的控制类型。而 ControlNet 又是 Stable Diffusion 的插件。所以你需要在你的 SD 里安装 ControlNet 插件。关于这个插件的安装和基础用法,可以看看 《『SD』ControlNet基础讲解》 这篇文章。

当你的 SD 安装好 ControlNet 后,需要到 huggingface 下载 control_v11e_sd15_ip2p 模型。下载链接我放在这里:huggingface.co/lllyasviel/...

control_v11e_sd15_ip2p.pth 下载好之后,将它放在 SD 的这个目录下: sd.webui\webui\models\ControlNet

然后启动 SD,启动 ControlNet,上传一张图片,并将该图片的尺寸发送到生成设置。接着将控制类型选择 InstructP2P

模型选择刚刚下载好的 control_v11e_sd15_ip2p (红框部分)。

黄框部分从左到右的选项分别是"控制权重"、"介入时机"、"终止时机",这个在 《『SD』ControlNet基础讲解》 里有介绍过。根据你的图片调整好参数,通常需要多次试验不同的权重和时机的值。

最后最后,回到页面上方,选择一个模型,然后输入提示词。

这里的提示词一定要使用这个语法:

MAKE it xxx

这里的 xxx 指的是你要实现的效果。

比如在我这个例子中,我要让场景变成春天,就需要这么写提示词 MAKE it spring

最后点击"Generate"按钮生成图片。

如果对生成结果不满意,记得调整一下 ControlNet 里的控制权重以及介入和终止时机。

多抽几张卡,抽到满意为止。

下面这张是原图,喜欢绫波丽的工友自取。


点赞 + 关注 + 收藏 = 学会了

相关推荐
机器之心3 分钟前
全球十亿级轨迹点驱动,首个轨迹基础大模型来了
人工智能·后端
z千鑫3 分钟前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss
EterNity_TiMe_4 分钟前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析
机智的小神仙儿20 分钟前
Query Processing——搜索与推荐系统的核心基础
人工智能·推荐算法
AI_小站27 分钟前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·程序人生·langchain·kubernetes·llama·知识库·rag
Doker 多克29 分钟前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt
Guofu_Liao29 分钟前
Llama模型文件介绍
人工智能·llama
思通数科多模态大模型1 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
数据岛1 小时前
数据集论文:面向深度学习的土地利用场景分类与变化检测
人工智能·深度学习
龙的爹23332 小时前
论文翻译 | RECITATION-AUGMENTED LANGUAGE MODELS
人工智能·语言模型·自然语言处理·prompt·gpu算力