欧拉恒等式的证明(原创方法)

欧拉恒等式

对于任何正整数n和任何整数a,满足gcd(a, n) = 1(即a和n互素)时,有 a φ ( n ) ≡ 1 ( % n ) a^{\varphi(n)}\equiv1(\%n) aφ(n)≡1(%n)。

证明(原创方法)

一. a a a 为素数的情况:

1. a a a 为素数且 n n n 为素数的情况:

a φ ( n ) = a n − 1 a^{\varphi(n)}=a^{n-1} aφ(n)=an−1。

利用费马小定理得 a n − 1 ≡ 1 ( % n ) a^{n-1}\equiv 1(\%n) an−1≡1(%n)。

所以 a φ ( n ) ≡ 1 a^{\varphi(n)}\equiv1 aφ(n)≡1 成立。

2. a a a 为素数且 n n n 为合数的情况:

将 n n n 进行质因数分解得: a φ ( n ) = a φ ( p 1 × p 2 × ... × p k ) a^{\varphi(n)}=a^{\varphi(p_1 \times p_2 \times \ldots \times p_k)} aφ(n)=aφ(p1×p2×...×pk)

利用欧拉函数得乘法性质得: a φ ( p 1 × p 2 × ... × p k ) = a φ ( p 1 ) × φ ( p 2 ) × ... × φ ( p k ) a^{\varphi(p_1 \times p_2 \times \ldots \times p_k)}=a^{\varphi(p_1) \times\varphi(p_2)\times\ldots\times\varphi(p_k)} aφ(p1×p2×...×pk)=aφ(p1)×φ(p2)×...×φ(pk)

变形得:

= ( a φ ( p 1 ) ) φ ( p 2 × ... × p k ) =(a^{\varphi(p_1)})^{\varphi(p_2\times\ldots\times p_k)} =(aφ(p1))φ(p2×...×pk)

% n \%n %n 得:

= ( a φ ( p 1 ) ) φ ( p 2 × ... × p k ) % n =(a^{\varphi(p_1)})^{\varphi(p_2\times\ldots\times p_k)}\%n =(aφ(p1))φ(p2×...×pk)%n

= ( a φ ( p 1 ) % n ) φ ( p 2 × ... × p k ) % n =(a^{\varphi(p_1)}\%n)^{\varphi(p_2\times\ldots\times p_k)}\%n =(aφ(p1)%n)φ(p2×...×pk)%n

= 1 φ ( p 2 × ... × p k ) =1^{\varphi(p_2\times\ldots\times p_k)} =1φ(p2×...×pk)

= 1 =1 =1,成立。

二. a a a 为合数得情况

将 a a a 进行质因数分解得: ( q 1 × q 2 × ... × q s ) φ ( n ) (q_1\times q_2\times\ldots\times q_s)^{\varphi(n)} (q1×q2×...×qs)φ(n)

= q 1 φ ( n ) × q 2 φ ( n ) × ... × q s φ ( n ) =q_1^{\varphi(n)}\times q_2^{\varphi(n)}\times\ldots\times q_s^{\varphi(n)} =q1φ(n)×q2φ(n)×...×qsφ(n)

% n 得: q 1 φ ( n ) % n × q 2 φ ( n ) % n × ... × q s φ ( n ) % n \%n 得:q_1^{\varphi(n)}\%n\times q_2^{\varphi(n)}\%n\times\ldots\times q_s^{\varphi(n)}\%n %n得:q1φ(n)%n×q2φ(n)%n×...×qsφ(n)%n

用上面得出得结论得: 1 × 1 × ... × 1 = 1 1\times1\times\ldots\times1=1 1×1×...×1=1

至此,证毕。

废话

我证了4天,整整4天!

相关推荐
万法若空7 分钟前
【wxWidgets教程】控件基础知识
c++·gui·wxwidgets·事件处理
就起这名行不行7 分钟前
一天训练即SOTA!LLaVA-1.5:多模态AI的“性价比之王”全解析
算法
yuer202510 分钟前
我把 GPT 当成 Runtime 用:只用一个客户端,跑一个可控、可审计的投资决策 DEMO
算法
鲅鱼饺子11 分钟前
PyTorch|BatchNorm 的两种方差
算法
栀秋66617 分钟前
面试常考的最长递增子序列(LIS),到底该怎么想、怎么写?
前端·javascript·算法
图形学爱好者_Wu19 分钟前
每日一个C++知识点|模板
c++
l1t25 分钟前
在duckdb 递归CTE中实现深度优先搜索DFS
sql·算法·深度优先·duckdb·cte
陈陈爱java42 分钟前
RRT建模
算法
智算菩萨1 小时前
摩擦电纳米发电机近期进展的理论脉络梳理:从接触起电到统一建模与能量转换
linux·人工智能·算法
xiaolang_8616_wjl1 小时前
c++超级细致的基本框架
开发语言·数据结构·c++·算法