欧拉恒等式的证明(原创方法)

欧拉恒等式

对于任何正整数n和任何整数a,满足gcd(a, n) = 1(即a和n互素)时,有 a φ ( n ) ≡ 1 ( % n ) a^{\varphi(n)}\equiv1(\%n) aφ(n)≡1(%n)。

证明(原创方法)

一. a a a 为素数的情况:

1. a a a 为素数且 n n n 为素数的情况:

a φ ( n ) = a n − 1 a^{\varphi(n)}=a^{n-1} aφ(n)=an−1。

利用费马小定理得 a n − 1 ≡ 1 ( % n ) a^{n-1}\equiv 1(\%n) an−1≡1(%n)。

所以 a φ ( n ) ≡ 1 a^{\varphi(n)}\equiv1 aφ(n)≡1 成立。

2. a a a 为素数且 n n n 为合数的情况:

将 n n n 进行质因数分解得: a φ ( n ) = a φ ( p 1 × p 2 × ... × p k ) a^{\varphi(n)}=a^{\varphi(p_1 \times p_2 \times \ldots \times p_k)} aφ(n)=aφ(p1×p2×...×pk)

利用欧拉函数得乘法性质得: a φ ( p 1 × p 2 × ... × p k ) = a φ ( p 1 ) × φ ( p 2 ) × ... × φ ( p k ) a^{\varphi(p_1 \times p_2 \times \ldots \times p_k)}=a^{\varphi(p_1) \times\varphi(p_2)\times\ldots\times\varphi(p_k)} aφ(p1×p2×...×pk)=aφ(p1)×φ(p2)×...×φ(pk)

变形得:

= ( a φ ( p 1 ) ) φ ( p 2 × ... × p k ) =(a^{\varphi(p_1)})^{\varphi(p_2\times\ldots\times p_k)} =(aφ(p1))φ(p2×...×pk)

% n \%n %n 得:

= ( a φ ( p 1 ) ) φ ( p 2 × ... × p k ) % n =(a^{\varphi(p_1)})^{\varphi(p_2\times\ldots\times p_k)}\%n =(aφ(p1))φ(p2×...×pk)%n

= ( a φ ( p 1 ) % n ) φ ( p 2 × ... × p k ) % n =(a^{\varphi(p_1)}\%n)^{\varphi(p_2\times\ldots\times p_k)}\%n =(aφ(p1)%n)φ(p2×...×pk)%n

= 1 φ ( p 2 × ... × p k ) =1^{\varphi(p_2\times\ldots\times p_k)} =1φ(p2×...×pk)

= 1 =1 =1,成立。

二. a a a 为合数得情况

将 a a a 进行质因数分解得: ( q 1 × q 2 × ... × q s ) φ ( n ) (q_1\times q_2\times\ldots\times q_s)^{\varphi(n)} (q1×q2×...×qs)φ(n)

= q 1 φ ( n ) × q 2 φ ( n ) × ... × q s φ ( n ) =q_1^{\varphi(n)}\times q_2^{\varphi(n)}\times\ldots\times q_s^{\varphi(n)} =q1φ(n)×q2φ(n)×...×qsφ(n)

% n 得: q 1 φ ( n ) % n × q 2 φ ( n ) % n × ... × q s φ ( n ) % n \%n 得:q_1^{\varphi(n)}\%n\times q_2^{\varphi(n)}\%n\times\ldots\times q_s^{\varphi(n)}\%n %n得:q1φ(n)%n×q2φ(n)%n×...×qsφ(n)%n

用上面得出得结论得: 1 × 1 × ... × 1 = 1 1\times1\times\ldots\times1=1 1×1×...×1=1

至此,证毕。

废话

我证了4天,整整4天!

相关推荐
我也不曾来过12 分钟前
list底层原理
数据结构·c++·list
A charmer9 分钟前
C++ 日志系统实战第三步:熟悉掌握各种设计模式
c++·日志系统
Ethon_王18 分钟前
STL容器适配器详解:queue篇
c++
静听夜半雨22 分钟前
CANoe入门——3、新建LIN工程及LIN DataBase(LDF文件)的创建
网络·数据库·c++·编辑器
梁下轻语的秋缘1 小时前
每日c/c++题 备战蓝桥杯 ([洛谷 P1226] 快速幂求模题解)
c++·算法·蓝桥杯
CODE_RabbitV1 小时前
【深度强化学习 DRL 快速实践】逆向强化学习算法 (IRL)
算法
虾球xz1 小时前
游戏引擎学习第244天: 完成异步纹理下载
c++·学习·游戏引擎
矛取矛求2 小时前
C++区别于C语言的提升用法(万字总结)
c语言·c++
mit6.8242 小时前
[贪心_7] 最优除法 | 跳跃游戏 II | 加油站
数据结构·算法·leetcode
keep intensify2 小时前
通讯录完善版本(详细讲解+源码)
c语言·开发语言·数据结构·算法