洛谷 B3609 [图论与代数结构 701] 强连通分量 题解 tarjan算法

[图论与代数结构 701] 强连通分量

题目描述

给定一张 n n n 个点 m m m 条边的有向图,求出其所有的强连通分量。

注意,本题可能存在重边和自环。

输入格式

第一行两个正整数 n n n , m m m ,表示图的点数和边数。

接下来 m m m 行,每行两个正整数 u u u 和 v v v 表示一条边。

输出格式

第一行一个整数表示这张图的强连通分量数目。

接下来每行输出一个强连通分量。第一行输出 1 号点所在强连通分量,第二行输出 2 号点所在强连通分量,若已被输出,则改为输出 3 号点所在强连通分量,以此类推。每个强连通分量按节点编号大小输出。

样例 #1

样例输入 #1

复制代码
6 8
1 2
1 5
2 6
5 6
6 1
5 3
6 4
3 4

样例输出 #1

复制代码
3
1 2 5 6
3
4

提示

对于所有数据, 1 ≤ n ≤ 10000 1 \le n \le 10000 1≤n≤10000, 1 ≤ m ≤ 100000 1 \le m \le 100000 1≤m≤100000。

原题

洛谷B3609------传送门

代码

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
typedef long long ll;

const int MAX = 1e5 + 6;
vector<int> e[MAX];
int dfn[MAX]; // 时间戳:dfn[i]表示节点i第一次被访问的顺序
int low[MAX]; // 追溯值:low[i]表示从节点i出发所能访问到的最早时间戳
int tot;        // 时间戳编号
int sta[MAX];   // 栈
int insta[MAX]; // 是否在栈中
int top;        // 栈顶索引
int scc[MAX];   // 强连通分量编号
int siz[MAX];   // 强连通分量大小
int cnt;        // 第cnt个强连通分量

vector<int> scc_num[MAX]; // 每个强连通分量里的元素
int vis[MAX];             // 第i个节点所在强连通分量是否已经输出

void scc_tarjan(int x)
{
    // 进入x时,盖戳,入栈
    dfn[x] = low[x] = ++tot;
    sta[++top] = x;
    insta[x] = 1;
    for (int y : e[x])
    {
        if (!dfn[y]) // y尚未访问
        {
            scc_tarjan(y);
            low[x] = min(low[x], low[y]); // 回到x时更新low
        }
        else if (insta[y]) // 如果y已访问且在栈中
        {
            low[x] = min(low[x], dfn[y]); // 回到x时更新low
        }
    }
    // 离开x时,记录SCC
    if (dfn[x] == low[x]) // 如果x是所处SCC的根
    {
        int y;
        ++cnt;
        do
        {
            y = sta[top--];
            insta[y] = 0;
            scc[y] = cnt;
            scc_num[cnt].push_back(y);
            ++siz[cnt];
        } while (y != x);
    }
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);

    int n, m;
    cin >> n >> m;
    int a, b;
    for (int i = 1; i <= m; i++)
    {
        cin >> a >> b;
        e[a].push_back(b);
    }
    for (int i = 1; i <= n; i++) //图可能不连通,所以需遍历所有节点
    {
        if (!dfn[i])
            scc_tarjan(i);
    }
    cout << cnt << '\n';
    for (int i = 1; i <= n; i++)
    {
        if (!vis[i])
        {
            sort(scc_num[scc[i]].begin(), scc_num[scc[i]].end()); //需按节点编号大小输出
            for (int j = 0; j < scc_num[scc[i]].size(); j++)
            {
                cout << scc_num[scc[i]][j] << " \n"[j == scc_num[scc[i]].size() - 1];
                vis[scc_num[scc[i]][j]] = 1; //标记已输出该节点
            }
        }
    }

    return 0;
}
相关推荐
沙威玛_LHE17 小时前
树和二叉树
数据结构·算法
py有趣19 小时前
LeetCode算法学习之两数之和 II - 输入有序数组
学习·算法·leetcode
夏鹏今天学习了吗19 小时前
【LeetCode热题100(62/100)】搜索二维矩阵
算法·leetcode·矩阵
吃着火锅x唱着歌21 小时前
LeetCode 1128.等价多米诺骨牌对的数量
算法·leetcode·职场和发展
十八岁讨厌编程21 小时前
【算法训练营 · 补充】LeetCode Hot100(中)
算法·leetcode
橘颂TA21 小时前
【剑斩OFFER】算法的暴力美学——最小覆盖字串
算法·c/c++·就业
wearegogog12321 小时前
基于混合蛙跳算法和漏桶算法的无线传感器网络拥塞控制与分簇新方法
网络·算法
程序员龙一1 天前
C++之static_cast关键字
开发语言·c++·static_cast
奶茶树1 天前
【C++/STL】map和multimap的使用
开发语言·c++·stl
Tiandaren1 天前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析