OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

1.功能描述

ShapeContextDistanceExtractor是OpenCV库中的一个类,主要用于计算形状之间的相似度或距离。它是基于形状上下文(Shape Context)特征描述符的,这是一种在计算机视觉和图像处理领域广泛使用的形状匹配技术。该方法由Belongie等人在2000年代初提出,通过分析形状边界点的邻域分布来描述形状特征,进而计算形状间的相似度。

2.使用场景

形状匹配 :在图像数据库中查找相似的形状或对象。
物体识别 :作为特征提取的一部分,辅助分类或识别任务。
内容基于的图像检索:根据形状内容搜索图像。

3.函数computeDistance

计算由其轮廓定义的两个形状之间的形状距离,首先提取每个轮廓的关键点及其邻域信息,然后通过比较不同轮廓间对应关键点的邻域分布差异来量化形状间的距离。

3.1函数原型

cpp 复制代码
virtual float cv::ShapeDistanceExtractor::computeDistance	(
InputArray 	contour1,
InputArray 	contour2 
)		

3.2 参数

  • 参数contour1 定义第一个形状的轮廓.
  • 参数contour2 定义第二个形状的轮廓...

4 示例代码

cpp 复制代码
#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/shape.hpp"

#include <iostream>
#include <opencv2/core/utility.hpp>
#include <string>
using namespace std;
using namespace cv;

static vector< Point > simpleContour( const Mat& currentQuery, int n = 300 )
{
    vector< vector< Point > > _contoursQuery;
    vector< Point > contoursQuery;
    findContours( currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE );
    for ( size_t border = 0; border < _contoursQuery.size(); border++ )
    {
        for ( size_t p = 0; p < _contoursQuery[ border ].size(); p++ )
        {
            contoursQuery.push_back( _contoursQuery[ border ][ p ] );
        }
    }
    // In case actual number of points is less than n
    int dummy = 0;
    for ( int add = ( int )contoursQuery.size() - 1; add < n; add++ )
    {
        contoursQuery.push_back( contoursQuery[ dummy++ ] );  // adding dummy values
    }
    // 均匀采样
    cv::randShuffle( contoursQuery );
    vector< Point > cont;
    for ( int i = 0; i < n; i++ )
    {
        cont.push_back( contoursQuery[ i ] );
    }
    return cont;
}
int main( int argc, char** argv )
{
    string path = "/media/dingxin/data/study/OpenCV/sources/images/shape/";
  
    cv::Ptr< cv::ShapeContextDistanceExtractor > mysc = cv::createShapeContextDistanceExtractor();
    Size sz2Sh( 300, 300 );
    stringstream queryName;
    int indexQuery = 1;
    queryName << path << indexQuery << ".jpg";
    Mat query = imread( queryName.str(), IMREAD_GRAYSCALE );
    Mat queryToShow;
    resize( query, queryToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );
    imshow( "QUERY", queryToShow );
    moveWindow( "TEST", 0, 0 );
    vector< Point > contQuery = simpleContour( query );
    int bestMatch             = 0;
    float bestDis             = FLT_MAX;
    for ( int ii = 1; ii <= 4; ii++ )
    {
        if ( ii == indexQuery )
            continue;
        waitKey( 30 );
        stringstream iiname;
        iiname << path << ii << ".jpg";
        cout << "name: " << iiname.str() << endl;
        Mat iiIm = imread( iiname.str(), 0 );
        Mat iiToShow;
        resize( iiIm, iiToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );
        imshow( "TEST", iiToShow );
        moveWindow( "TEST", sz2Sh.width + 50, 0 );
        vector< Point > contii = simpleContour( iiIm );
        float dis              = mysc->computeDistance( contQuery, contii );
        //获取匹配度最佳的id和匹配距离值
        if ( dis < bestDis )
        {
            bestMatch = ii;
            bestDis   = dis;
        }
        std::cout << " distance between " << queryName.str() << " and " << iiname.str() << " is: " << dis << std::endl;
    }
    destroyWindow( "TEST" );
    stringstream bestname;
    bestname << path << bestMatch << ".jpg";
    Mat iiIm = imread( bestname.str(), 0 );
    Mat bestToShow;
    resize( iiIm, bestToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );
    imshow( "BEST MATCH", bestToShow );
    moveWindow( "BEST MATCH", sz2Sh.width + 50, 0 );
    waitKey();
    return 0;
}

运行结果

我一共选了4张图,拿第一张图跟其他三张图比较,看哪个图跟第一张图里的足球形状匹配的最好。四张图如下:

运行结果:

命令行输出结果:

相关推荐
佚明zj42 分钟前
全卷积和全连接
人工智能·深度学习
程序小旭3 小时前
机器视觉基础—双目相机
计算机视觉·双目相机
qzhqbb3 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨4 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041084 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌5 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭5 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^5 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246666 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k6 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘