Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

下面是一个使用DBO-BiTCN-BiGRU-Attention(蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制)进行多变量回归预测的简化示例的Matlab代码。请注意,这只是一个示例,并且可能需要根据您的具体数据和问题进行适当的修改和调整。

matlab

% 步骤1:准备数据

% 假设有多个特征的训练集(train_data, train_labels)和测试集(test_data, test_labels)

% train_data和test_data是输入数据,train_labels和test_labels是对应的目标变量

% 步骤2:数据预处理

% 对输入数据进行必要的预处理,例如归一化、标准化等

% 步骤3:定义模型参数

input_size = size(train_data); % 输入数据的大小

output_size = size(train_labels); % 输出数据的大小

% DBO参数

num_iterations = 50; % 迭代次数

num_particles = 20; % 粒子数量

% BiTCN参数

num_filters = 32; % 卷积核数量

filter_size = 3; % 卷积核大小

num_layers = 4; % TCN层数

dilations = [1, 2, 4, 8]; % 扩张因子

% BiGRU参数

hidden_size = 64; % 隐层大小

% Attention参数

attention_size = 32; % 注意力大小

% 步骤4:定义模型架构

model = [

sequenceInputLayer(input_size) % 输入层

复制代码
bitcnLayers(num_filters, filter_size, num_layers, dilations) % BiTCN层

bidirectional(gruLayer(hidden_size, 'OutputMode', 'last')) % 双向GRU层

attentionLayer(attention_size) % 注意力层

fullyConnectedLayer(output_size) % 全连接层
regressionLayer % 回归层

];

% 步骤5:使用DBO算法优化模型

options = optimoptions('particleswarm', ...

'SwarmSize', num_particles, ...

'MaxIterations', num_iterations);

rng('default'); % 设置随机种子,以确保结果可复现

% 定义优化目标函数

objective = @(x)trainAndEvaluateModel(x, train_data, train_labels, test_data, test_labels);

% 运行DBO算法进行优化

x_optimal, fval\] = particleswarm(objective, numel(model), \[\], \[\], \[\], \[\], \[\], \[\], options); % 使用优化后的参数更新模型 trained_model = model; trained_model = setWeights(trained_model, x_optimal); % 步骤6:模型评估 predicted_labels = predict(trained_model, test_data); % 步骤7:计算评估指标 mse = mean((test_labels - predicted_labels).\^2); % 均方误差 rmse = sqrt(mse); % 均方根误差 % 输出评估指标 fprintf('均方误差: %.4f\\n', mse); fprintf('均方根误差: %.4f\\n', rmse); % 定义训练和评估模型的函数 function loss = trainAndEvaluateModel(x, train_data, train_labels, test_data, test_labels) model = createModel(x); % 创建模型 trained_model = trainModel(model, train_data, train_labels); % 训练模型 predicted_labels = predict(trained_model, test_data); % 预测 loss = mean((test_labels - predicted_labels).\^2); % 均方误差作为优化目标 end % 创建模型的函数 function model = createModel(x) model = \[ sequenceInputLayer(input_size) % 输入层 bitcnLayers(x(1), x(2), x(3), x(4:end-2)) % BiTC

相关推荐
再卷也是菜7 分钟前
算法基础篇(8)贪心算法
算法·贪心算法·1024程序员节
电气小僧23 分钟前
LCL滤波器传递函数及波特图绘制
matlab·硬件工程·硬件·电力电子·电源·开关电源
AI科技星39 分钟前
接近光速运动下的光速不变性:基于张祥前统一场论的推导与验证
数据结构·人工智能·经验分享·算法·计算机视觉
陈苏同学1 小时前
笔记1.4:机器人学的语言——三维空间位姿描述 (旋转矩阵 - 齐次变换矩阵 - 欧拉角 - 四元数高效表示旋转)
笔记·线性代数·算法·机器人
scx201310042 小时前
20251025 分治总结
数据结构·c++·算法
碧海银沙音频科技研究院2 小时前
DiVE长尾识别的虚拟实例蒸馏方法
arm开发·人工智能·深度学习·算法·音视频
Evand J2 小时前
【MATLAB例程】自适应渐消卡尔曼滤波,背景为二维雷达目标跟踪,基于扩展卡尔曼(EKF)|附完整代码的下载链接
开发语言·matlab·目标跟踪·1024程序员节
居7然3 小时前
DeepSeek OCR:重新定义AI文档处理的“降本增效”新范式
人工智能·算法·语言模型·自然语言处理·大模型·ocr
while(1){yan}3 小时前
数据结构之堆
数据结构·python·算法
SleepyWhite0014 小时前
代码随想录Day61|Floyd 算法精讲、A * 算法精讲
算法·floyd算法·astar算法