Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

下面是一个使用DBO-BiTCN-BiGRU-Attention(蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制)进行多变量回归预测的简化示例的Matlab代码。请注意,这只是一个示例,并且可能需要根据您的具体数据和问题进行适当的修改和调整。

matlab

% 步骤1:准备数据

% 假设有多个特征的训练集(train_data, train_labels)和测试集(test_data, test_labels)

% train_data和test_data是输入数据,train_labels和test_labels是对应的目标变量

% 步骤2:数据预处理

% 对输入数据进行必要的预处理,例如归一化、标准化等

% 步骤3:定义模型参数

input_size = size(train_data); % 输入数据的大小

output_size = size(train_labels); % 输出数据的大小

% DBO参数

num_iterations = 50; % 迭代次数

num_particles = 20; % 粒子数量

% BiTCN参数

num_filters = 32; % 卷积核数量

filter_size = 3; % 卷积核大小

num_layers = 4; % TCN层数

dilations = [1, 2, 4, 8]; % 扩张因子

% BiGRU参数

hidden_size = 64; % 隐层大小

% Attention参数

attention_size = 32; % 注意力大小

% 步骤4:定义模型架构

model = [

sequenceInputLayer(input_size) % 输入层

复制代码
bitcnLayers(num_filters, filter_size, num_layers, dilations) % BiTCN层

bidirectional(gruLayer(hidden_size, 'OutputMode', 'last')) % 双向GRU层

attentionLayer(attention_size) % 注意力层

fullyConnectedLayer(output_size) % 全连接层
regressionLayer % 回归层

];

% 步骤5:使用DBO算法优化模型

options = optimoptions('particleswarm', ...

'SwarmSize', num_particles, ...

'MaxIterations', num_iterations);

rng('default'); % 设置随机种子,以确保结果可复现

% 定义优化目标函数

objective = @(x)trainAndEvaluateModel(x, train_data, train_labels, test_data, test_labels);

% 运行DBO算法进行优化

x_optimal, fval\] = particleswarm(objective, numel(model), \[\], \[\], \[\], \[\], \[\], \[\], options); % 使用优化后的参数更新模型 trained_model = model; trained_model = setWeights(trained_model, x_optimal); % 步骤6:模型评估 predicted_labels = predict(trained_model, test_data); % 步骤7:计算评估指标 mse = mean((test_labels - predicted_labels).\^2); % 均方误差 rmse = sqrt(mse); % 均方根误差 % 输出评估指标 fprintf('均方误差: %.4f\\n', mse); fprintf('均方根误差: %.4f\\n', rmse); % 定义训练和评估模型的函数 function loss = trainAndEvaluateModel(x, train_data, train_labels, test_data, test_labels) model = createModel(x); % 创建模型 trained_model = trainModel(model, train_data, train_labels); % 训练模型 predicted_labels = predict(trained_model, test_data); % 预测 loss = mean((test_labels - predicted_labels).\^2); % 均方误差作为优化目标 end % 创建模型的函数 function model = createModel(x) model = \[ sequenceInputLayer(input_size) % 输入层 bitcnLayers(x(1), x(2), x(3), x(4:end-2)) % BiTC

相关推荐
2501_9412362120 小时前
C++与Node.js集成
开发语言·c++·算法
云边有个稻草人1 天前
部分移动(Partial Move)的使用场景:Rust 所有权拆分的精细化实践
开发语言·算法·rust
松涛和鸣1 天前
11.C 语言学习:递归、宏定义、预处理、汉诺塔、Fibonacci 等
linux·c语言·开发语言·学习·算法·排序算法
2501_941111241 天前
C++与自动驾驶系统
开发语言·c++·算法
2501_941111691 天前
C++中的枚举类高级用法
开发语言·c++·算法
jz_ddk1 天前
[算法] 算法PK:LMS与RLS的对比研究
人工智能·神经网络·算法·信号处理·lms·rls·自适应滤波
Miraitowa_cheems1 天前
LeetCode算法日记 - Day 106: 两个字符串的最小ASCII删除和
java·数据结构·算法·leetcode·深度优先
旭编1 天前
小红的好矩形
c++·算法
小白程序员成长日记1 天前
2025.11.12 力扣每日一题
算法·leetcode·职场和发展
Alex艾力的IT数字空间1 天前
设计既保持高性能又兼顾可移植性的跨平台数据结构
数据结构·分布式·算法·微服务·中间件·架构·动态规划