Matlab实现DBO-BiTCN-BiGRU-Attention蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

下面是一个使用DBO-BiTCN-BiGRU-Attention(蜣螂算法优化双向时间卷积双向门控循环单元融合注意力机制)进行多变量回归预测的简化示例的Matlab代码。请注意,这只是一个示例,并且可能需要根据您的具体数据和问题进行适当的修改和调整。

matlab

% 步骤1:准备数据

% 假设有多个特征的训练集(train_data, train_labels)和测试集(test_data, test_labels)

% train_data和test_data是输入数据,train_labels和test_labels是对应的目标变量

% 步骤2:数据预处理

% 对输入数据进行必要的预处理,例如归一化、标准化等

% 步骤3:定义模型参数

input_size = size(train_data); % 输入数据的大小

output_size = size(train_labels); % 输出数据的大小

% DBO参数

num_iterations = 50; % 迭代次数

num_particles = 20; % 粒子数量

% BiTCN参数

num_filters = 32; % 卷积核数量

filter_size = 3; % 卷积核大小

num_layers = 4; % TCN层数

dilations = [1, 2, 4, 8]; % 扩张因子

% BiGRU参数

hidden_size = 64; % 隐层大小

% Attention参数

attention_size = 32; % 注意力大小

% 步骤4:定义模型架构

model = [

sequenceInputLayer(input_size) % 输入层

复制代码
bitcnLayers(num_filters, filter_size, num_layers, dilations) % BiTCN层

bidirectional(gruLayer(hidden_size, 'OutputMode', 'last')) % 双向GRU层

attentionLayer(attention_size) % 注意力层

fullyConnectedLayer(output_size) % 全连接层
regressionLayer % 回归层

];

% 步骤5:使用DBO算法优化模型

options = optimoptions('particleswarm', ...

'SwarmSize', num_particles, ...

'MaxIterations', num_iterations);

rng('default'); % 设置随机种子,以确保结果可复现

% 定义优化目标函数

objective = @(x)trainAndEvaluateModel(x, train_data, train_labels, test_data, test_labels);

% 运行DBO算法进行优化

x_optimal, fval\] = particleswarm(objective, numel(model), \[\], \[\], \[\], \[\], \[\], \[\], options); % 使用优化后的参数更新模型 trained_model = model; trained_model = setWeights(trained_model, x_optimal); % 步骤6:模型评估 predicted_labels = predict(trained_model, test_data); % 步骤7:计算评估指标 mse = mean((test_labels - predicted_labels).\^2); % 均方误差 rmse = sqrt(mse); % 均方根误差 % 输出评估指标 fprintf('均方误差: %.4f\\n', mse); fprintf('均方根误差: %.4f\\n', rmse); % 定义训练和评估模型的函数 function loss = trainAndEvaluateModel(x, train_data, train_labels, test_data, test_labels) model = createModel(x); % 创建模型 trained_model = trainModel(model, train_data, train_labels); % 训练模型 predicted_labels = predict(trained_model, test_data); % 预测 loss = mean((test_labels - predicted_labels).\^2); % 均方误差作为优化目标 end % 创建模型的函数 function model = createModel(x) model = \[ sequenceInputLayer(input_size) % 输入层 bitcnLayers(x(1), x(2), x(3), x(4:end-2)) % BiTC

相关推荐
喂我花生(๑•̀ㅂ•́)و✧11 分钟前
JAVA中ArrayList的解析
java·开发语言·算法
摄殓永恒21 分钟前
【入门】斜角II
c++·算法·图论
David Bates2 小时前
代码随想录第41天:图论2(岛屿系列)
python·算法·图论
司小豆2 小时前
视觉-语言基础模型作为高效的机器人模仿学习范式
人工智能·算法·机器人
oioihoii3 小时前
C++23 新特性:为 std::pair 的转发构造函数添加默认实参
算法·c++23
智者知已应修善业3 小时前
【验证哥德巴赫猜想(奇数)】2021-11-19 15:54
c语言·c++·经验分享·笔记·算法
-qOVOp-4 小时前
zst-2001 历年真题 设计模式
java·算法·设计模式
evolution_language4 小时前
LintCode第68题-二叉树的前序遍历,第67题-二叉树的后序遍历
数据结构·算法·新手必刷编程50题
passionSnail4 小时前
《用MATLAB玩转游戏开发:从零开始打造你的数字乐园》基础篇(2D图形交互)-俄罗斯方块:用旋转矩阵打造经典
算法·matlab·矩阵·游戏程序·交互
yxc_inspire4 小时前
C++STL在算法竞赛中的应用详解
c++·算法·stl