人工智能 ChatGPT 的多种应用:如何更好地提问

简介

ChatGPT 的主要优点之一是它能够理解和响应自然语言输入。在日常生活中,沟通本来就是很重要的一门课程,沟通的过程中表达的越清晰,给到的信息越多,那么沟通就越顺畅。

和 ChatGPT 沟通也是同样的道理,如果想要 ChatGPT 给到的信息越准确,越清晰,和它的沟通就至关重要。

如何能和 ChatGPT 建立一个良好的沟通方式呢?其实就是靠提示词 Prompt。

价值

可能很多同学疑惑的点在于,提示词还需要另外去学吗?这个看起来貌似有手就行的操作,只要会打字就能够立刻上手吧?

但是会和用的好是两回事。我们可以把 ChatGPT 想象成孙悟空的金箍棒,本身它是一个非常强大的法器,但是如果不会使用,它也不过是一根铁棍而已。提示词用的越好,ChatGPT 就越强大。

而且对于有编程基础的人来说,后续如果想要基于 LLM 或大语言模型快速构建、开发一些应用软件或者功能。不掌握 prompt 的基本原理和使用技巧,是无法达到很好的效果的。

在最后的相关资料里面,也添加了由微软和 OpenAI 所出的,针对于开发者的提示词的教程。我们的课程同样在后面也会带来基于 prompt 的应用开发实践。

提示词的原则与技巧

而写一个好的提示词,有以下的技巧可以使用。

  • 写清楚需求:GPT 模型无法读懂您的想法,因此在提供需求时尽可能具体是很重要的。这包括在您的查询中包含详细信息,要求模型采用角色,以及使用定界符清楚地指示输入的不同部分。

  • 提供参考文本:如果可以,请提供与您希望模型生成的内容相似的参考文本。这将有助于模型了解您要查找的内容并生成更准确的结果。

  • 将复杂的任务拆分为更简单的子任务:如果您试图让模型做一些复杂的事情,将任务分解为更小、更易于管理的子任务会很有帮助。这将使模型更容易理解您的要求并生成更准确的结果。

  • 角色扮演:这个技巧的作用是告诉 ChatGPT 在对话中扮演一个特定的角色或人物。这对于创造更有吸引力和沉浸感的对话,或模拟真实世界的场景特别有用。

  • 系统地测试变化: 对需求或参考文本进行更改时,重要的是系统地测试结果以了解它们如何影响模型的输出。这将帮助您确定对改进结果最有效的更改。

写清楚需求

编写有效的 ChatGPT 的难点之一是表达含糊不清。为了避免这个问题,有以下几个问题需要注意:

定义任何专业术语或技术术语。

避免使用模棱两可的语言。

使用清晰或简明的语言

错误的案例:"你是我的哈基米吗?"

哈基米属于网络用语,而且诞生在 2023 年,ChatGPT 是无法理解这个词的语意的。

好的案例:"请帮我提供在深圳市宝安区所有的咖啡馆"

简明扼要说清楚自己的需求,无需多言,ChatGPT 便很好理解了。

提供参考文本

对于文本比较短的引用,可以直接贴到提问里面即可:如果你有一段法律条款,并希望模型使用这段条款来解释某个概念,你可以这样提问:"根据以下的法律条款,什么是知识产权?"然后附上法律条款的内容。

网页链接的引用:也可以直接将网页链接里面的内容提供给 GPT 来作为引用文本。比如可以直接给它一个链接地址,让它总结文章内的内容。(注意这个功能需要使用 web 插件)

拆解复杂任务

作为一个厨师,在做饭的时候需要完成这些步骤:准备食材、清理食材、处理食材、开始烹饪、摆盘。

在这个过程中,其实厨师就是把一个复杂的任务,拆解成了多个简单的任务。其实在编程的过程中,也是同样的道理。也会把一个复杂需求,拆解为 N 个简单的子需求。

如果需要 ChatGPT 帮助我们完成一个复杂的任务,那么,我们需要预先帮它把任务拆分。这样做的优点是:

更好理解每一个操作步骤。

不被上下文限制影响。

方便调整。

例如我们提出了一个如下的复杂任务:

提示词:作为一个测试工程师,我即将进行述职答辩,我想编写一个述职报告,述职报告需要包含我今年的成绩、我明年的目标、以及我在今年的工作过程中碰到的问题

ChatGPT 虽然给到了相应的回复,但是还有问题:

工作成绩没有清晰的数据也没有说服力,看着比较干瘪。报告内容没有图表。

内容太过简单空洞。

格式不够优雅。

如果我们把提问的方式做进一步优化,把这个复杂问题一步步进行拆解,并给 ChatGPT 一定的修改反馈,则产生的内容会更加符合我们的需求,比如我们可以把问题分解为:

提示词:作为一个测试工程师,我即将进行述职答辩,我想编写一个述职报告。述职报告需要包含我今年的成绩,我今年带领测试团队将 bug 的逃逸率降低了 10%的比例。并且我希望有一个通过 echarts 绘制的折线图。请将我的述职报告做进一步优化。

当然我们从这张图片中可以看出折线图无法展示,我们可以进一步给 GPT 提示信息,让它直接给到报表的源码。

提示词:echarts 折线图没有展示出来

然后 GPT 就会解释原因,并且给到解决方案。由此可见,将问题拆解,我们可以随时调整 GPT 的返回信息,让其更加贴近我们的需求。

借助外部工具

作为一个大语言生成模型,GPT4 并不擅长各种数学计算。比如下面的问题(来自官方 GPT 最佳指南中的示例问题):

提示词:查找以下多项式的所有实值根:3x^5 - 5x^4 - 3x^3 - 7x - 10

如果直接提问的话,通常没法直接给出答案,如下图所示,虽然借助 Python,给出了运算过程,但是其实 ChatGPT 无法像人类数学家一样,给出直接的推导过程:

所以可以将提示词改为:

提示词:查找以下多项式的所有实值根:3x^5 - 5x^4 - 3x^3 - 7x - 10 ,使用 Python 实现。

在后续碰到 ChatGPT 无法直接解决的问题时,不妨继续尝试这种曲线救国的方式。

角色扮演

角色扮演的过程就更为简单了,我们在编写提示词的时候,只需要给它加上一些角色的设定。

比如这个例子:

提示词:请用鲁迅的口吻,写一篇文章,叫做我的妈妈,要求字数在 800 字以内。

除了扮演其他作家之外,ChatGPT 甚至可以扮演领导,面试官,浏览器的 console 插件等各种各样我们可以想象到的角色:

提示词:我希望你作为一个 javascript 控制台。我将输入命令,你回复 javascript 控制台应显示的内容。我希望您只在一个唯一的代码块内回复终端输出,而不是其他任何内容。不要写解释。我的第一个命令是 console.log("Hello World");

系统的测试变化

正如人在回复信息的时候,也无法保证所有的回复都是正确的,ChatGPT 也无法保证每次给到的信息都是"靠谱的"或者是满足需求的。

所以 ChatGPT 的每一次回复,在确认没有问题之后,再使用。如果有问题的话,可以进一步进行提问,ChatGPT 会根据提示词不停的纠正回复。以达到一个满意的效果。

比如这个示例:

提示词:请问 App 的产品在测试的过程中需要注意什么

在测试一个 App 产品的过程中,有一些重要的注意事项可以帮助确保产品质量和用户体验。以下是一些你应该注意的方面:
1. **功能性测试:** 确保所有的功能都能正常工作,包括用户界面、交互和后台操作。测试每个功能的不同用例和场景,以确保没有错误或异常情况。
2. **兼容性测试:** 测试 App 在不同设备、操作系统版本和屏幕尺寸上的兼容性。这有助于确保用户在各种环境中都能正常使用 App。
3. **性能测试:** 测试 App 的性能,包括加载速度、响应时间和资源占用等。确保 App 在各种条件下都能保持良好的性能。
...省略...
11. **更新和升级测试:** 在发布新版本或更新时,确保之前的功能仍然正常,没有引入新的问题。
12. **法律和隐私合规性:** 确保 App 遵守相关的法律法规和隐私政策,特别是涉及用户数据和隐私的方面。
总之,测试是确保你的 App 产品质量和用户满意度的关键步骤。细致的测试流程和综合的测试策略可以帮助你尽早发现和解决问题,提供优秀的用户体验。

提示词:请针对兼容性测试再做一些补充。

当进行兼容性测试时,你需要关注不同设备、操作系统版本、浏览器以及屏幕尺寸之间的兼容性。以下是一些针对兼容性测试的补充建议:
1. **设备兼容性测试:** 确保你的 App 在各种不同品牌、型号和操作系统的移动设备上都能正常运行。考虑测试不同的手机和平板设备。
2. **操作系统版本兼容性测试:** 测试 App 在不同操作系统版本上的兼容性,包括最新版本和一些较旧的版本。一些用户可能还在使用较老的操作系统。
...省略...
11. **更新和升级兼容性测试:** 当你发布新版本或更新时,确保之前的功能仍然正常,没有引入新的兼容性问题。
12. **错误处理和提示信息:** 在不兼容的设备或环境下,确保 App 能够提供适当的错误提示,引导用户解决问题。
通过兼容性测试,你可以确保你的 App 在不同的环境中都能够提供一致的用户体验,减少用户因设备或环境不同而遇到的问题,从而提高用户满意度。

通过不停的测试以及纠正 ChatGPT 的回复,即可最终获得一个满意的回复。

总结

在学习 AIGC 的过程中,需要打破的往常的认知,不能再将 AI 作为简单的程序看待,反而要把它当作一个"人"来看待。

就像和人沟通一样,需要注意措辞、语气、沟通方式,才能够真正做到学会与 AI 对话,发挥它强大的作用。

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊 ,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

四、AI大模型商业化落地方案

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

相关推荐
feifeikon32 分钟前
大模型GUI系列论文阅读 DAY4续:《Large Language Model Agent for Fake News Detection》
论文阅读·人工智能·语言模型
feifeikon40 分钟前
图神经网络系列论文阅读DAY1:《Predicting Tweet Engagement with Graph Neural Networks》
论文阅读·人工智能·神经网络
ZStack开发者社区3 小时前
AI应用、轻量云、虚拟化|云轴科技ZStack参编金融行标与报告
人工智能·科技·金融
存内计算开发者4 小时前
机器人奇点:从宇树科技看2025具身智能发展
深度学习·神经网络·机器学习·计算机视觉·机器人·视觉检测·具身智能
真想骂*5 小时前
人工智能如何重塑音频、视觉及多模态领域的应用格局
人工智能·音视频
赛丽曼7 小时前
机器学习-K近邻算法
人工智能·机器学习·近邻算法
架构文摘JGWZ7 小时前
FastJson很快,有什么用?
后端·学习
大懒猫软件8 小时前
如何运用python爬虫获取大型资讯类网站文章,并同时导出pdf或word格式文本?
python·深度学习·自然语言处理·网络爬虫
啊波次得饿佛哥8 小时前
7. 计算机视觉
人工智能·计算机视觉·视觉检测
XianxinMao9 小时前
RLHF技术应用探析:从安全任务到高阶能力提升
人工智能·python·算法