论文阅读U-KAN Makes Strong Backbone for MedicalImage Segmentation and Generation

作为一种非常有潜力的代替MLP的模型,KAN最终获得了学术界极大的关注。在我昨天的博客里,解读了最近的热门模型KAN:

论文阅读KAN: Kolmogorov--Arnold Networks-CSDN博客

KAN的原文作者提到了很多不足。本文算是对其中两个现有不足的回应,也就是:1)KAN不仅只能用于特定结构和深度,2)KAN不仅能用于小规模AI+Science任务,还可以用于更大规模或更复杂的任务。

本文将KAN融入了U-Net网络结构中,并运用在医学图像分割任务上。

1,U-KAN架构

整体结构如图,是个U-Net经典的对称编解码器结构。编解码器都有卷积部分和token化KAN模块部分组成。卷积部分如U-Net一样,不赘述。

Token化的KAN模块:

1)token化:首先对特征进行重塑,得到一系列扁平化的二维patch。接着进行线性投影,线性投影是通过一个核大小为3的卷积层实现的。卷积层足以编码位置信息,并且其性能实际上优于标准的位置编码技术。

2)KAN块:在获取到token之后,我们将它们传入一系列的KAN层(N=3)。在每个KAN层之后,特征会通过一个高效的深度卷积层(DwConv)、一个批量归一化层(BN)和一个ReLU激活函数。此外,还是用了残差连接。

2,消融实验

1)KAN层层数影响

2)KAN层换成MLP的话,结果会下降(在我看来本文最重要的结论也就是这个)

3)模型规模的影响

3,与SOTA对比

4,本文的缺陷与不足

本文在我看来有两个主要不足:

1)训练难度:KAN至关重要的训练难度问题没有提及。将KAN结构嵌入U-Net是否会导致训练变得不稳定或难以收敛呢?训练速度会慢多少呢?

2)实验对比不充分,结果可能不SOTA

本文的对比实验,完全没有对比基于Transformer的图像分割模型 ,对比的几个模型要么是纯卷积模型,要么是卷积+MLP模型。那么我们是否可以认为U-KAN的结果逊于主流的Transformer分割模型?

5总结

在我看来,虽然本文模型大概率并不SOTA,但是也不是非要SOTA的模型和实验才有价值。

本文的价值在于验证了KAN可以用于更广泛的数据集,并且在更多场景下展现了超越和取代MLP的潜力。

相关推荐
埃菲尔铁塔_CV算法9 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR9 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
MarkHD12 分钟前
第十一天 线性代数基础
线性代数·决策树·机器学习
打羽毛球吗️16 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
好喜欢吃红柚子32 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python37 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯1 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠1 小时前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon1 小时前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~1 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习