【机器学习】klearn基础教程

scikit-learn(通常缩写为sklearn)是一个用于Python编程语言的强大机器学习库。它提供了各种分类、回归、聚类算法,以及数据预处理、降维和模型评估的工具。以下是sklearn的基础教程,帮助你开始使用它:

1. 安装scikit-learn

你可以使用pip来安装scikit-learn

bash 复制代码
pip install scikit-learn

或者,如果你使用conda作为你的包和环境管理器,可以使用:

bash 复制代码
conda install scikit-learn
复制代码
2. 加载数据集

sklearn自带了一些数据集,比如鸢尾花数据集(Iris dataset)和乳腺癌数据集(Breast Cancer dataset)。这些可以用于快速开始机器学习实验。

python 复制代码
from sklearn.datasets import load_iris  
  
# 加载鸢尾花数据集  
iris = load_iris()  
X = iris.data  # 特征  
y = iris.target  # 标签

3. 数据预处理

在将数据输入到机器学习模型之前,通常需要进行一些预处理步骤,如特征缩放或编码分类变量。

python 复制代码
from sklearn.preprocessing import StandardScaler  
  
# 特征缩放  
scaler = StandardScaler()  
X_scaled = scaler.fit_transform(X)

4. 划分数据集

通常,我们将数据集划分为训练集和测试集,以便在训练模型后评估其性能。

python 复制代码
from sklearn.model_selection import train_test_split  
  
# 划分数据集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

5. 选择和训练模型

sklearn提供了各种机器学习算法。以下是一个使用逻辑回归(Logistic Regression)进行分类的示例。

python 复制代码
from sklearn.linear_model import LogisticRegression  
  
# 创建逻辑回归模型实例  
model = LogisticRegression()  
  
# 训练模型  
model.fit(X_train, y_train)

6. 评估模型

在训练模型后,我们使用测试集来评估其性能。

python 复制代码
from sklearn.metrics import accuracy_score  
  
# 预测测试集  
y_pred = model.predict(X_test)  
  
# 计算准确度  
accuracy = accuracy_score(y_test, y_pred)  
print(f"Accuracy: {accuracy}")

7. 其他功能

除了上述基础功能外,sklearn还提供了其他许多功能,如模型调参(通过GridSearchCVRandomizedSearchCV)、交叉验证、特征选择、降维(如PCA)、聚类(如KMeans)等。

8. 示例:使用决策树进行分类

以下是一个使用决策树(Decision Tree)进行分类的示例。

python 复制代码
from sklearn.tree import DecisionTreeClassifier  
  
# 创建决策树模型实例  
tree_model = DecisionTreeClassifier()  
  
# 训练模型  
tree_model.fit(X_train, y_train)  
  
# 预测测试集并评估性能(省略了评估步骤,但你可以像上面那样使用accuracy_score)

9. 参考资料

希望这个基础教程能帮助你开始使用scikit-learn

人工智能相关文章推荐阅读:

1.TF-IDF算法在人工智能方面的应用,附带代码

2.深度解读 ChatGPT基本原理

3.AI大模型的战场分化:通用与垂直,谁将引领未来?

4.学习人工智能需要学习哪些课程,从入门到进阶到高级课程区分

5.如何用python修复一张有多人图像的老照片,修复后照片是彩色高清

相关推荐
却道天凉_好个秋16 小时前
OpenCV(四十七):FLANN特征匹配
人工智能·opencv·计算机视觉
BBB努力学习程序设计16 小时前
Python多线程与多进程编程实战指南
python
雪落无尘处16 小时前
Anaconda 虚拟环境配置全攻略+Pycharm使用虚拟环境开发:从安装到高效管理
后端·python·pycharm·conda·anaconda
Amelia11111116 小时前
day36
python
Ma04071316 小时前
【论文阅读27】-LMPHM:基于因果网络和大语言模型-增强知识图网络的故障推理诊断
人工智能·语言模型·自然语言处理
Nautiluss16 小时前
一起调试XVF3800麦克风阵列(二)
大数据·人工智能·嵌入式硬件·音频·语音识别·dsp开发
玖日大大16 小时前
AI智能体聚焦场景化应用,赋能产业创新与效率提升
大数据·人工智能
不惑_16 小时前
通俗理解多层感知机(MLP)
开发语言·人工智能·python·深度学习
小徐Chao努力16 小时前
【Langchain4j-Java AI开发】02-模型参数配置与调优
java·开发语言·人工智能
代码代码快快显灵16 小时前
Windows下Anaconda安装OpenCV以及OpenCV入门
图像处理·人工智能·opencv