【机器学习】klearn基础教程

scikit-learn(通常缩写为sklearn)是一个用于Python编程语言的强大机器学习库。它提供了各种分类、回归、聚类算法,以及数据预处理、降维和模型评估的工具。以下是sklearn的基础教程,帮助你开始使用它:

1. 安装scikit-learn

你可以使用pip来安装scikit-learn

bash 复制代码
pip install scikit-learn

或者,如果你使用conda作为你的包和环境管理器,可以使用:

bash 复制代码
conda install scikit-learn
复制代码
2. 加载数据集

sklearn自带了一些数据集,比如鸢尾花数据集(Iris dataset)和乳腺癌数据集(Breast Cancer dataset)。这些可以用于快速开始机器学习实验。

python 复制代码
from sklearn.datasets import load_iris  
  
# 加载鸢尾花数据集  
iris = load_iris()  
X = iris.data  # 特征  
y = iris.target  # 标签

3. 数据预处理

在将数据输入到机器学习模型之前,通常需要进行一些预处理步骤,如特征缩放或编码分类变量。

python 复制代码
from sklearn.preprocessing import StandardScaler  
  
# 特征缩放  
scaler = StandardScaler()  
X_scaled = scaler.fit_transform(X)

4. 划分数据集

通常,我们将数据集划分为训练集和测试集,以便在训练模型后评估其性能。

python 复制代码
from sklearn.model_selection import train_test_split  
  
# 划分数据集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

5. 选择和训练模型

sklearn提供了各种机器学习算法。以下是一个使用逻辑回归(Logistic Regression)进行分类的示例。

python 复制代码
from sklearn.linear_model import LogisticRegression  
  
# 创建逻辑回归模型实例  
model = LogisticRegression()  
  
# 训练模型  
model.fit(X_train, y_train)

6. 评估模型

在训练模型后,我们使用测试集来评估其性能。

python 复制代码
from sklearn.metrics import accuracy_score  
  
# 预测测试集  
y_pred = model.predict(X_test)  
  
# 计算准确度  
accuracy = accuracy_score(y_test, y_pred)  
print(f"Accuracy: {accuracy}")

7. 其他功能

除了上述基础功能外,sklearn还提供了其他许多功能,如模型调参(通过GridSearchCVRandomizedSearchCV)、交叉验证、特征选择、降维(如PCA)、聚类(如KMeans)等。

8. 示例:使用决策树进行分类

以下是一个使用决策树(Decision Tree)进行分类的示例。

python 复制代码
from sklearn.tree import DecisionTreeClassifier  
  
# 创建决策树模型实例  
tree_model = DecisionTreeClassifier()  
  
# 训练模型  
tree_model.fit(X_train, y_train)  
  
# 预测测试集并评估性能(省略了评估步骤,但你可以像上面那样使用accuracy_score)

9. 参考资料

希望这个基础教程能帮助你开始使用scikit-learn

人工智能相关文章推荐阅读:

1.TF-IDF算法在人工智能方面的应用,附带代码

2.深度解读 ChatGPT基本原理

3.AI大模型的战场分化:通用与垂直,谁将引领未来?

4.学习人工智能需要学习哪些课程,从入门到进阶到高级课程区分

5.如何用python修复一张有多人图像的老照片,修复后照片是彩色高清

相关推荐
却道天凉_好个秋11 小时前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ11 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
XiaoMu_00111 小时前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游
THMAIL11 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
却道天凉_好个秋11 小时前
计算机视觉(八):开运算和闭运算
人工智能·计算机视觉·开运算与闭运算
无风听海11 小时前
神经网络之深入理解偏置
人工智能·神经网络·机器学习·偏置
JoinApper11 小时前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
北京地铁1号线12 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
飞哥数智坊12 小时前
即梦4.0实测:我真想对PS说“拜拜”了!
人工智能
fantasy_arch12 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习