python 数据清洗基础教程

使用Python进行处理数据集删减的步骤通常包括数据清洗、数据分析和数据采样。以下是一些基本的示例代码,展示了如何使用Python进行这些操作:

  1. 数据清洗
    • 删除重复项:
python 复制代码
import pandas as pd
# 假设数据集是一个CSV文件
df = pd.read_csv('dataset.csv')
# 删除重复行
df.drop_duplicates(inplace=True)
  • 删除含有空值的行:
python 复制代码
df.dropna(inplace=True)
  • 删除特定条件的数据:
python 复制代码
# 删除包含特定关键词的行
df = df[~df['text_column'].str.contains('特定关键词')]
# 删除长度过短的文本
df = df[df['text_column'].str.len() > 10]
  1. 数据分析
    • 分析数据集的分布:
python 复制代码
# 查看每个类别的数量
category_counts = df['category_column'].value_counts()
# 如果类别不平衡,可以考虑进行采样
  1. 数据采样
    • 下采样或上采样以处理类别不平衡:
python 复制代码
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
# 假设目标变量是'y_column'
X = df.drop('y_column', axis=1)
y = df['y_column']
# 上采样
oversampler = RandomOverSampler()
X_over, y_over = oversampler.fit_resample(X, y)
# 下采样
undersampler = RandomUnderSampler()
X_under, y_under = undersampler.fit_resample(X, y)
# 重新组合数据集
df_over = pd.concat([X_over, y_over], axis=1)
df_under = pd.concat([X_under, y_under], axis=1)
  1. 保存处理后的数据集
python 复制代码
# 保存清洗后的数据集
df_clean.to_csv('dataset_clean.csv', index=False)
# 保存采样后的数据集
df_over.to_csv('dataset_over.csv', index=False)
df_under.to_csv('dataset_under.csv', index=False)

在实际应用中,数据清洗和采样可能会更加复杂,需要根据具体的数据集和任务需求进行适当的调整。此外,对于文本数据,可能还需要进行分词、去除停用词、词干提取或词形还原等预处理步骤。

相关推荐
二十雨辰2 分钟前
[Java基础]网络编程
java·开发语言
AL.千灯学长3 分钟前
DeepSeek接入Siri(已升级支持苹果手表)完整版硅基流动DeepSeek-R1部署
人工智能·gpt·ios·ai·苹果vision pro
人间打气筒(Ada)4 分钟前
MySQL优化
数据库·mysql
MZWeiei6 分钟前
PTA:运用顺序表实现多项式相加
算法
GISer_Jing13 分钟前
Javascript排序算法(冒泡排序、快速排序、选择排序、堆排序、插入排序、希尔排序)详解
javascript·算法·排序算法
cookies_s_s13 分钟前
Linux--进程(进程虚拟地址空间、页表、进程控制、实现简易shell)
linux·运维·服务器·数据结构·c++·算法·哈希算法
AC使者16 分钟前
介绍 TensorFlow 的基本概念和使用场景。
开发语言·自然语言处理·sqlite·github
HealthScience16 分钟前
【异常错误】pycharm debug view变量的时候显示不全,中间会以...显示
ide·python·pycharm
LCG元35 分钟前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
小蒜学长38 分钟前
医疗报销系统的设计与实现(代码+数据库+LW)
数据库·spring boot·学习·oracle·课程设计