python 数据清洗基础教程

使用Python进行处理数据集删减的步骤通常包括数据清洗、数据分析和数据采样。以下是一些基本的示例代码,展示了如何使用Python进行这些操作:

  1. 数据清洗
    • 删除重复项:
python 复制代码
import pandas as pd
# 假设数据集是一个CSV文件
df = pd.read_csv('dataset.csv')
# 删除重复行
df.drop_duplicates(inplace=True)
  • 删除含有空值的行:
python 复制代码
df.dropna(inplace=True)
  • 删除特定条件的数据:
python 复制代码
# 删除包含特定关键词的行
df = df[~df['text_column'].str.contains('特定关键词')]
# 删除长度过短的文本
df = df[df['text_column'].str.len() > 10]
  1. 数据分析
    • 分析数据集的分布:
python 复制代码
# 查看每个类别的数量
category_counts = df['category_column'].value_counts()
# 如果类别不平衡,可以考虑进行采样
  1. 数据采样
    • 下采样或上采样以处理类别不平衡:
python 复制代码
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
# 假设目标变量是'y_column'
X = df.drop('y_column', axis=1)
y = df['y_column']
# 上采样
oversampler = RandomOverSampler()
X_over, y_over = oversampler.fit_resample(X, y)
# 下采样
undersampler = RandomUnderSampler()
X_under, y_under = undersampler.fit_resample(X, y)
# 重新组合数据集
df_over = pd.concat([X_over, y_over], axis=1)
df_under = pd.concat([X_under, y_under], axis=1)
  1. 保存处理后的数据集
python 复制代码
# 保存清洗后的数据集
df_clean.to_csv('dataset_clean.csv', index=False)
# 保存采样后的数据集
df_over.to_csv('dataset_over.csv', index=False)
df_under.to_csv('dataset_under.csv', index=False)

在实际应用中,数据清洗和采样可能会更加复杂,需要根据具体的数据集和任务需求进行适当的调整。此外,对于文本数据,可能还需要进行分词、去除停用词、词干提取或词形还原等预处理步骤。

相关推荐
AI军哥7 分钟前
MySQL8的安装方法
人工智能·mysql·yolo·机器学习·deepseek
球求了17 分钟前
C++:继承机制详解
开发语言·c++·学习
余弦的倒数21 分钟前
知识蒸馏和迁移学习的区别
人工智能·机器学习·迁移学习
Allen Bright21 分钟前
【机器学习-线性回归-2】理解线性回归中的连续值与离散值
人工智能·机器学习·线性回归
小光学长25 分钟前
基于vue框架的电信用户业务管理系统的设计与实现8ly70(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
数据库
adam_life29 分钟前
http://noi.openjudge.cn/——2.5基本算法之搜索——200:Solitaire
算法·宽搜·布局唯一码
weixin_贾30 分钟前
最新AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
python·机器学习·植被参数·遥感反演
张槊哲39 分钟前
函数的定义与使用(python)
开发语言·python
程序员不想YY啊40 分钟前
MySQL元数据库完全指南:探秘数据背后的数据
数据库·mysql·oracle
数据最前线43 分钟前
Doris表设计与分区策略:让海量数据管理更高效
数据库