python 数据清洗基础教程

使用Python进行处理数据集删减的步骤通常包括数据清洗、数据分析和数据采样。以下是一些基本的示例代码,展示了如何使用Python进行这些操作:

  1. 数据清洗
    • 删除重复项:
python 复制代码
import pandas as pd
# 假设数据集是一个CSV文件
df = pd.read_csv('dataset.csv')
# 删除重复行
df.drop_duplicates(inplace=True)
  • 删除含有空值的行:
python 复制代码
df.dropna(inplace=True)
  • 删除特定条件的数据:
python 复制代码
# 删除包含特定关键词的行
df = df[~df['text_column'].str.contains('特定关键词')]
# 删除长度过短的文本
df = df[df['text_column'].str.len() > 10]
  1. 数据分析
    • 分析数据集的分布:
python 复制代码
# 查看每个类别的数量
category_counts = df['category_column'].value_counts()
# 如果类别不平衡,可以考虑进行采样
  1. 数据采样
    • 下采样或上采样以处理类别不平衡:
python 复制代码
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
# 假设目标变量是'y_column'
X = df.drop('y_column', axis=1)
y = df['y_column']
# 上采样
oversampler = RandomOverSampler()
X_over, y_over = oversampler.fit_resample(X, y)
# 下采样
undersampler = RandomUnderSampler()
X_under, y_under = undersampler.fit_resample(X, y)
# 重新组合数据集
df_over = pd.concat([X_over, y_over], axis=1)
df_under = pd.concat([X_under, y_under], axis=1)
  1. 保存处理后的数据集
python 复制代码
# 保存清洗后的数据集
df_clean.to_csv('dataset_clean.csv', index=False)
# 保存采样后的数据集
df_over.to_csv('dataset_over.csv', index=False)
df_under.to_csv('dataset_under.csv', index=False)

在实际应用中,数据清洗和采样可能会更加复杂,需要根据具体的数据集和任务需求进行适当的调整。此外,对于文本数据,可能还需要进行分词、去除停用词、词干提取或词形还原等预处理步骤。

相关推荐
惊讶的猫2 分钟前
LSTM论文解读
开发语言·python
cynicme14 分钟前
力扣3228——将 1 移动到末尾的最大操作次数
算法·leetcode
熬了夜的程序员15 分钟前
【LeetCode】109. 有序链表转换二叉搜索树
数据结构·算法·leetcode·链表·职场和发展·深度优先
獨枭25 分钟前
C# 本地项目引用失效与恢复全攻略
开发语言·c#·visual studio
随意起个昵称28 分钟前
【递归】二进制字符串中的第K位
c++·算法
测试老哥39 分钟前
软件测试之单元测试知识总结
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
百***920240 分钟前
【MySQL】MySQL库的操作
android·数据库·mysql
翔云 OCR API40 分钟前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
q***766640 分钟前
Spring Boot 从 2.7.x 升级到 3.3注意事项
数据库·hive·spring boot
buvsvdp50059ac1 小时前
如何在VSCode中设置Python解释器?
ide·vscode·python