python 数据清洗基础教程

使用Python进行处理数据集删减的步骤通常包括数据清洗、数据分析和数据采样。以下是一些基本的示例代码,展示了如何使用Python进行这些操作:

  1. 数据清洗
    • 删除重复项:
python 复制代码
import pandas as pd
# 假设数据集是一个CSV文件
df = pd.read_csv('dataset.csv')
# 删除重复行
df.drop_duplicates(inplace=True)
  • 删除含有空值的行:
python 复制代码
df.dropna(inplace=True)
  • 删除特定条件的数据:
python 复制代码
# 删除包含特定关键词的行
df = df[~df['text_column'].str.contains('特定关键词')]
# 删除长度过短的文本
df = df[df['text_column'].str.len() > 10]
  1. 数据分析
    • 分析数据集的分布:
python 复制代码
# 查看每个类别的数量
category_counts = df['category_column'].value_counts()
# 如果类别不平衡,可以考虑进行采样
  1. 数据采样
    • 下采样或上采样以处理类别不平衡:
python 复制代码
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
# 假设目标变量是'y_column'
X = df.drop('y_column', axis=1)
y = df['y_column']
# 上采样
oversampler = RandomOverSampler()
X_over, y_over = oversampler.fit_resample(X, y)
# 下采样
undersampler = RandomUnderSampler()
X_under, y_under = undersampler.fit_resample(X, y)
# 重新组合数据集
df_over = pd.concat([X_over, y_over], axis=1)
df_under = pd.concat([X_under, y_under], axis=1)
  1. 保存处理后的数据集
python 复制代码
# 保存清洗后的数据集
df_clean.to_csv('dataset_clean.csv', index=False)
# 保存采样后的数据集
df_over.to_csv('dataset_over.csv', index=False)
df_under.to_csv('dataset_under.csv', index=False)

在实际应用中,数据清洗和采样可能会更加复杂,需要根据具体的数据集和任务需求进行适当的调整。此外,对于文本数据,可能还需要进行分词、去除停用词、词干提取或词形还原等预处理步骤。

相关推荐
m0_653031364 分钟前
PostgreSQL技术大讲堂 - 第97讲:PG数据库编码和区域(locale)答疑解惑
数据库·postgresql
弥彦_7 分钟前
cf1925B&C
数据结构·算法
心情好的小球藻8 分钟前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
都叫我大帅哥10 分钟前
LangChain加载HTML内容全攻略:从入门到精通
python·langchain
静心问道12 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域14 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶15 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域15 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜17 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
惜.己20 分钟前
使用python读取json数据,简单的处理成元组数组
开发语言·python·测试工具·json