python 数据清洗基础教程

使用Python进行处理数据集删减的步骤通常包括数据清洗、数据分析和数据采样。以下是一些基本的示例代码,展示了如何使用Python进行这些操作:

  1. 数据清洗
    • 删除重复项:
python 复制代码
import pandas as pd
# 假设数据集是一个CSV文件
df = pd.read_csv('dataset.csv')
# 删除重复行
df.drop_duplicates(inplace=True)
  • 删除含有空值的行:
python 复制代码
df.dropna(inplace=True)
  • 删除特定条件的数据:
python 复制代码
# 删除包含特定关键词的行
df = df[~df['text_column'].str.contains('特定关键词')]
# 删除长度过短的文本
df = df[df['text_column'].str.len() > 10]
  1. 数据分析
    • 分析数据集的分布:
python 复制代码
# 查看每个类别的数量
category_counts = df['category_column'].value_counts()
# 如果类别不平衡,可以考虑进行采样
  1. 数据采样
    • 下采样或上采样以处理类别不平衡:
python 复制代码
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
# 假设目标变量是'y_column'
X = df.drop('y_column', axis=1)
y = df['y_column']
# 上采样
oversampler = RandomOverSampler()
X_over, y_over = oversampler.fit_resample(X, y)
# 下采样
undersampler = RandomUnderSampler()
X_under, y_under = undersampler.fit_resample(X, y)
# 重新组合数据集
df_over = pd.concat([X_over, y_over], axis=1)
df_under = pd.concat([X_under, y_under], axis=1)
  1. 保存处理后的数据集
python 复制代码
# 保存清洗后的数据集
df_clean.to_csv('dataset_clean.csv', index=False)
# 保存采样后的数据集
df_over.to_csv('dataset_over.csv', index=False)
df_under.to_csv('dataset_under.csv', index=False)

在实际应用中,数据清洗和采样可能会更加复杂,需要根据具体的数据集和任务需求进行适当的调整。此外,对于文本数据,可能还需要进行分词、去除停用词、词干提取或词形还原等预处理步骤。

相关推荐
会挠头但不秃1 分钟前
深度学习(4)卷积神经网络
人工智能·神经网络·cnn
晨曦夜月4 分钟前
笔试强训day7
开发语言·c++·算法
Kurbaneli7 分钟前
先啃C语言还是直奔目标?
开发语言
iAkuya10 分钟前
(leetcode)力扣100 14合并区间(差分/排序)
算法·leetcode·职场和发展
百***243713 分钟前
GPT-5.2 技术升级与极速接入指南:从版本迭代到落地实践
大数据·人工智能·gpt
老华带你飞15 分钟前
建筑材料管理|基于springboot 建筑材料管理系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·学习·spring
weixin_3077791325 分钟前
Jenkins Pipeline 完全指南:核心概念、使用详解与最佳实践
开发语言·ci/cd·自动化·jenkins·etl
kk”28 分钟前
c++红黑树
开发语言·c++
Gomiko29 分钟前
JavaScript DOM 原生部分(二):元素内容修改
开发语言·javascript·ecmascript
Z_W_H_32 分钟前
【C#】C#中值类型和引用类型参数传递的区别
开发语言·c#