PyTorch -- RNN 快速实践

  • RNN Layer torch.nn.RNN(input_size,hidden_size,num_layers,batch_first)

    • input_size: 输入的编码维度
    • hidden_size: 隐含层的维数
    • num_layers: 隐含层的层数
    • batch_first: ·True 指定输入的参数顺序为:
      • x:[batch, seq_len, input_size]
      • h0:[batch, num_layers, hidden_size]
  • RNN 的输入

    • x:[seq_len, batch, input_size]
      • seq_len: 输入的序列长度
      • batch: batch size 批大小
    • h0:[num_layers, batch, hidden_size]
  • RNN 的输出

    • y: [seq_len, batch, hidden_size]


  • 实战之预测 正弦曲线:以下会以此为例,演示 RNN 预测任务的部署
    • 步骤一:确定 RNN Layer 相关参数值并基于此创建 Net

      python3 复制代码
      import numpy as np
      from matplotlib import pyplot as plt
      
      import torch
      import torch.nn as nn
      import torch.optim as optim
      
      
      seq_len     = 50
      batch       = 1
      num_time_steps = seq_len
      
      input_size  = 1
      output_size = input_size
      hidden_size = 10  	
      num_layers = 1  	
      batch_first = True 
      
      class Net(nn.Module):  ## model 定义
      	def __init__(self):
      		super(Net, self).__init__()
      		self.rnn = nn.RNN(
      		input_size=input_size,
      		hidden_size=hidden_size,
      		num_layers=num_layers,
      		batch_first=batch_first)
      		# for p in self.rnn.parameters():
      		# 	nn.init.normal_(p, mean=0.0, std=0.001)
      		self.linear = nn.Linear(hidden_size, output_size)
      
      	def forward(self, x, hidden_prev):
      		out, hidden_prev = self.rnn(x, hidden_prev)
      		# out: [batch, seq_len, hidden_size]
      		out = out.view(-1, hidden_size)  # [batch*seq_len, hidden_size]
      		out = self.linear(out) 			 # [batch*seq_len, output_size]
      		out = out.unsqueeze(dim=0)    # [1, batch*seq_len, output_size]
      		return out, hidden_prev
    • 步骤二:确定 训练流程

      python3 复制代码
      lr=0.01
      
      def tarin_RNN():
          model = Net()
          print('model:\n',model)
          criterion = nn.MSELoss()
          optimizer = optim.Adam(model.parameters(), lr)
          hidden_prev = torch.zeros(num_layers, batch, hidden_size)  #初始化h
      
          l = []
          for iter in range(100):  # 训练100次
              start = np.random.randint(10, size=1)[0]  ## 序列起点
              time_steps = np.linspace(start, start+10, num_time_steps)  ## 序列
              data = np.sin(time_steps).reshape(num_time_steps, 1)  ## 序列数据
      
              x = torch.tensor(data[:-1]).float().view(batch, seq_len-1, input_size)
              y = torch.tensor(data[1: ]).float().view(batch, seq_len-1, input_size)  # 目标为预测一个新的点
      
              output, hidden_prev = model(x, hidden_prev)
              hidden_prev = hidden_prev.detach()  ## 最后一层隐藏层的状态要 detach
      
              loss = criterion(output, y)
              model.zero_grad()
              loss.backward()
              optimizer.step()
      
              if iter % 100 == 0:
                  print("Iteration: {} loss {}".format(iter, loss.item()))
                  l.append(loss.item())
          #############################绘制损失函数#################################
          plt.plot(l,'r')
          plt.xlabel('训练次数')
          plt.ylabel('loss')
          plt.title('RNN LOSS')
          plt.savefig('RNN_LOSS.png')
          return hidden_prev,model
      
       hidden_prev,model = tarin_RNN()
    • 步骤三:测试训练结果

      python3 复制代码
      start = np.random.randint(3, size=1)[0]  ## 序列起点
      time_steps = np.linspace(start, start+10, num_time_steps)  ## 序列
      data = np.sin(time_steps).reshape(num_time_steps, 1)  ## 序列数据
      x = torch.tensor(data[:-1]).float().view(batch, seq_len-1, input_size)
      y = torch.tensor(data[1: ]).float().view(batch, seq_len-1, input_size)  # 目标为预测一个新的点    
      
      predictions = []  ## 预测结果
      input = x[:,0,:]
      for _ in range(x.shape[1]):
          input = input.view(1, 1, 1)
          pred, hidden_prev = model(input, hidden_prev)
          input = pred  ## 循环获得每个input点输入网络
          predictions.append(pred.detach().numpy()[0])
      x= x.data.numpy()
      y = y.data.numpy( )
      plt.scatter(time_steps[:-1], x.squeeze(), s=90)
      plt.plot(time_steps[:-1], x.squeeze())
      plt.scatter(time_steps[1:],predictions)  ## 黄色为预测
      plt.show()

【高阶】上述例子比较简单,便于入门以推理到自己的目标任务,实际 RNN 训练可能更有难度,可以添加

  • 对于梯度爆炸的解决:

    python3 复制代码
    for p in model.parameters()"
    	p.grad.nomr()
    	torch.nn.utils.clip_grad_norm_(p, 10)  ## 其中的 norm 后面的_ 表示 in place
  • 对于梯度消失的解决:-> LSTM


相关推荐
极造数字12 小时前
MES系统在不同制造行业中的应用差异与共性
大数据·人工智能·物联网·信息可视化·制造
信息快讯12 小时前
【智能融合:增材制造多物理场AI建模与工业应用实战】
人工智能·制造
joan_8512 小时前
jquery在文心智能体平台使用API方式部署智能体-AI客服
前端·人工智能·ai·jquery
Baihai_IDP12 小时前
2025 年大语言模型架构演进:DeepSeek V3、OLMo 2、Gemma 3 与 Mistral 3.1 核心技术剖析
人工智能·llm·aigc
理智的煎蛋13 小时前
GPU 服务器压力测试核心工具全解析:gpu-burn、cpu-burn 与 CUDA Samples
运维·服务器·人工智能·压力测试·gpu算力
陈敬雷-充电了么-CEO兼CTO13 小时前
视频理解新纪元!VideoChat双模架构突破视频对话瓶颈,开启多模态交互智能时代
人工智能·chatgpt·大模型·多模态·世界模型·kimi·deepseek
simodai13 小时前
机器学习1.Anaconda安装+环境配置
人工智能·机器学习
IT_陈寒13 小时前
JavaScript 2024:10个颠覆你认知的ES新特性实战解析
前端·人工智能·后端
ModelWhale13 小时前
AI教育白皮书解读 | 医学教育数智化转型新机遇,“人工智能+”行动实践正当时
人工智能·ai
大模型真好玩13 小时前
大模型工程面试经典(五)—大模型微调与RAG该如何选?
人工智能·面试·deepseek