PyTorch -- RNN 快速实践

  • RNN Layer torch.nn.RNN(input_size,hidden_size,num_layers,batch_first)

    • input_size: 输入的编码维度
    • hidden_size: 隐含层的维数
    • num_layers: 隐含层的层数
    • batch_first: ·True 指定输入的参数顺序为:
      • x:[batch, seq_len, input_size]
      • h0:[batch, num_layers, hidden_size]
  • RNN 的输入

    • x:[seq_len, batch, input_size]
      • seq_len: 输入的序列长度
      • batch: batch size 批大小
    • h0:[num_layers, batch, hidden_size]
  • RNN 的输出

    • y: [seq_len, batch, hidden_size]


  • 实战之预测 正弦曲线:以下会以此为例,演示 RNN 预测任务的部署
    • 步骤一:确定 RNN Layer 相关参数值并基于此创建 Net

      python3 复制代码
      import numpy as np
      from matplotlib import pyplot as plt
      
      import torch
      import torch.nn as nn
      import torch.optim as optim
      
      
      seq_len     = 50
      batch       = 1
      num_time_steps = seq_len
      
      input_size  = 1
      output_size = input_size
      hidden_size = 10  	
      num_layers = 1  	
      batch_first = True 
      
      class Net(nn.Module):  ## model 定义
      	def __init__(self):
      		super(Net, self).__init__()
      		self.rnn = nn.RNN(
      		input_size=input_size,
      		hidden_size=hidden_size,
      		num_layers=num_layers,
      		batch_first=batch_first)
      		# for p in self.rnn.parameters():
      		# 	nn.init.normal_(p, mean=0.0, std=0.001)
      		self.linear = nn.Linear(hidden_size, output_size)
      
      	def forward(self, x, hidden_prev):
      		out, hidden_prev = self.rnn(x, hidden_prev)
      		# out: [batch, seq_len, hidden_size]
      		out = out.view(-1, hidden_size)  # [batch*seq_len, hidden_size]
      		out = self.linear(out) 			 # [batch*seq_len, output_size]
      		out = out.unsqueeze(dim=0)    # [1, batch*seq_len, output_size]
      		return out, hidden_prev
    • 步骤二:确定 训练流程

      python3 复制代码
      lr=0.01
      
      def tarin_RNN():
          model = Net()
          print('model:\n',model)
          criterion = nn.MSELoss()
          optimizer = optim.Adam(model.parameters(), lr)
          hidden_prev = torch.zeros(num_layers, batch, hidden_size)  #初始化h
      
          l = []
          for iter in range(100):  # 训练100次
              start = np.random.randint(10, size=1)[0]  ## 序列起点
              time_steps = np.linspace(start, start+10, num_time_steps)  ## 序列
              data = np.sin(time_steps).reshape(num_time_steps, 1)  ## 序列数据
      
              x = torch.tensor(data[:-1]).float().view(batch, seq_len-1, input_size)
              y = torch.tensor(data[1: ]).float().view(batch, seq_len-1, input_size)  # 目标为预测一个新的点
      
              output, hidden_prev = model(x, hidden_prev)
              hidden_prev = hidden_prev.detach()  ## 最后一层隐藏层的状态要 detach
      
              loss = criterion(output, y)
              model.zero_grad()
              loss.backward()
              optimizer.step()
      
              if iter % 100 == 0:
                  print("Iteration: {} loss {}".format(iter, loss.item()))
                  l.append(loss.item())
          #############################绘制损失函数#################################
          plt.plot(l,'r')
          plt.xlabel('训练次数')
          plt.ylabel('loss')
          plt.title('RNN LOSS')
          plt.savefig('RNN_LOSS.png')
          return hidden_prev,model
      
       hidden_prev,model = tarin_RNN()
    • 步骤三:测试训练结果

      python3 复制代码
      start = np.random.randint(3, size=1)[0]  ## 序列起点
      time_steps = np.linspace(start, start+10, num_time_steps)  ## 序列
      data = np.sin(time_steps).reshape(num_time_steps, 1)  ## 序列数据
      x = torch.tensor(data[:-1]).float().view(batch, seq_len-1, input_size)
      y = torch.tensor(data[1: ]).float().view(batch, seq_len-1, input_size)  # 目标为预测一个新的点    
      
      predictions = []  ## 预测结果
      input = x[:,0,:]
      for _ in range(x.shape[1]):
          input = input.view(1, 1, 1)
          pred, hidden_prev = model(input, hidden_prev)
          input = pred  ## 循环获得每个input点输入网络
          predictions.append(pred.detach().numpy()[0])
      x= x.data.numpy()
      y = y.data.numpy( )
      plt.scatter(time_steps[:-1], x.squeeze(), s=90)
      plt.plot(time_steps[:-1], x.squeeze())
      plt.scatter(time_steps[1:],predictions)  ## 黄色为预测
      plt.show()

【高阶】上述例子比较简单,便于入门以推理到自己的目标任务,实际 RNN 训练可能更有难度,可以添加

  • 对于梯度爆炸的解决:

    python3 复制代码
    for p in model.parameters()"
    	p.grad.nomr()
    	torch.nn.utils.clip_grad_norm_(p, 10)  ## 其中的 norm 后面的_ 表示 in place
  • 对于梯度消失的解决:-> LSTM


相关推荐
小徐Chao努力6 分钟前
【Langchain4j-Java AI开发】04-AI 服务核心模式
java·人工智能·python
好奇龙猫8 分钟前
【人工智能学习-AI-MIT公开课-第5. 搜索:最优、分支限界、A**】
人工智能·学习
白日做梦Q15 分钟前
预训练模型微调(Finetune)实战:策略、技巧及常见误区规避
人工智能·python·神经网络·机器学习·计算机视觉
阿星AI工作室19 分钟前
这一年,让我人生事业开挂的13个认知
人工智能
玄同76519 分钟前
Python 流程控制:LLM 批量推理与 API 限流处理
服务器·人工智能·python·深度学习·自然语言处理·数据挖掘·知识图谱
Dev7z22 分钟前
基于Matlab实现GRACE卫星重力数据的全球水储量变化估算与分析
人工智能·算法·matlab
IT_陈寒25 分钟前
Vue3性能优化实战:7个被低估的Composition API技巧让渲染提速40%
前端·人工智能·后端
乾元28 分钟前
生成对抗样本在网络安全中的工程化解读——AI 误报、误判与对抗的真实边界
运维·网络·人工智能·python·安全·web安全
独孤--蝴蝶33 分钟前
AI人工智能-大语言模型的神秘力量ICL(下)-第十一周(小白)
人工智能·语言模型·自然语言处理
机器学习之心38 分钟前
守正创新,拥抱未来:机器学习之心2025年度总结
人工智能