【Python/Pytorch 】-- 滑动窗口算法

文章目录

文章目录

  • [00 写在前面](#00 写在前面)
  • [01 基于Python版本的滑动窗口代码](#01 基于Python版本的滑动窗口代码)
  • [02 算法效果](#02 算法效果)

00 写在前面

写这个算法原因是:训练了一个时序网络,该网络模型的时序维度为32,而测试数据的时序维度为90。因此需要采用滑动窗口的方法,生成一系列32维度的窗口,用于测试。

该算法中用到了一个python的关键字yield,其用于定义生成器函数。生成器函数与普通函数不同,它可以在执行过程中暂停,并在以后继续从暂停的地方恢复执行。每次调用生成器函数时,都会返回一个生成器对象,而不是直接返回一个值。在你的代码中,yield 用于产生一个滑动窗口。

01 基于Python版本的滑动窗口代码

python 复制代码
def window(seq, size=3, stride=2):
    """
    返回一个滑动窗口(宽度为'size')在数据序列'seq'上,具有指定的'stride'。
    例如,seq -> (s0, s1, ..., s[size-1]), (s[stride], s[stride+1], ..., s[stride+size-1]), ...
    """
    it = iter(seq)  # 从输入序列创建一个迭代器
    result = []  # 初始化一个空列表来存储当前窗口

    # 遍历迭代器中的每个元素
    for elem in it:
        result.append(elem)  # 将当前元素添加到窗口中
        if len(result) == size:  # 如果窗口达到所需大小
            yield result  # 生成当前窗口
            result = result[stride:]  # 根据步幅长度滑动窗口

    # 如果主循环后结果列表中还有剩余元素
    if result:
        i = 0  # 初始化一个计数器来填充剩余窗口
        while len(result) < size:  # 当窗口小于所需大小时
            result.append(seq[i % len(seq)])  # 从序列开始添加元素
            i += 1  # 增加计数器
        yield result  # 生成最终窗口

02 算法效果

python 复制代码
# 示例使用
seq = [1, 2, 3, 4, 5, 6, 7, 8]
for windowed in window(seq, size=3, stride=2):
    print(windowed)  # 打印每个滑动窗口

初始状态:result = []
添加元素:result = [1, 2, 3] 生成窗口 [1, 2, 3],重置 result = [3]
添加元素:result = [3, 4, 5] 生成窗口 [3, 4, 5],重置 result = [5]
添加元素:result = [5, 6, 7] 生成窗口 [5, 6, 7],重置 result = [7]
添加元素:result = [7, 8]
填充元素:result = [7, 8, 1],生成最后一个窗口 [7, 8, 1]
相关推荐
reddingtons1 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK1 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
hn小菜鸡1 小时前
LeetCode 377.组合总和IV
数据结构·算法·leetcode
Deepoch2 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch2 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines2 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey2 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币2 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
费弗里3 小时前
Python全栈应用开发利器Dash 3.x新版本介绍(1)
python·dash
平和男人杨争争3 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习