Repetition Improves Language Model Embeddings论文阅读笔记

  • 文章提出了一种提高decoder-only LLM的embedding能力的方法,叫echo embeddings
  • last-token pooling(即直接选最后一个token作为句子的embedding)和直接mean pooling都不如文章提出的echo embedding,做法是把句子重复两次,然后取第二次的token是的mean pooling。mean pooling的缺点是太强调句子的前面部分,last-token pooling是太强调句子的后面部分,而重复两次后,第二次的句子的起始token也包含了完整句子的语义,从而不会出现直接mean pooling的问题。
  • 另外一点是,输入要添加一些instruction以鼓励第二次的句子编码包含完整句子信息,如下:
相关推荐
Blossom.1184 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn5 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
海盗儿6 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
阿部多瑞 ABU6 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
不爱写代码的玉子7 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study7 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
要努力啊啊啊7 小时前
Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一
人工智能·语言模型·自然语言处理·faiss
小喵喵生气气7 小时前
Python60日基础学习打卡Day46
深度学习·机器学习
jackson凌8 小时前
【Java学习笔记】SringBuffer类(重点)
java·笔记·学习
J_Xiong01178 小时前
【LLMs篇】14:扩散语言模型的理论优势与局限性
人工智能·语言模型·自然语言处理