如何快速使用向量检索服务DashVector?

免费体验阿里云高性能向量检索服务:https://www.aliyun.com/product/ai/dashvector


本文将介绍如何快速上手使用向量检索服务DashVector。

前提条件

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. Cluster Endpoint,可在控制台"Cluster详情"中查看。

Step1. 创建Client

使用HTTP API时可跳过本步骤。

Python示例:

复制代码
import dashvector

client = dashvector.Client(
    api_key='YOUR_API_KEY',
    endpoint='YOUR_CLUSTER_ENDPOINT'
)
assert client

Step2. 创建Collection

创建一个名称为quickstart,向量维度为4的collection。

Python示例:

复制代码
client.create(name='quickstart', dimension=4)

collection = client.get('quickstart')
assert collection

说明

1.在未指定距离度量参数时,将使用默认的Cosine距离度量方式。

2.在未指定向量数据类型时,将使用默认的Float数据类型。

Step3. 插入Doc

Python示例:

复制代码
from dashvector import Doc

# 通过dashvector.Doc对象,插入单条数据
collection.insert(Doc(id='1', vector=[0.1, 0.2, 0.3, 0.4]))

# 通过dashvector.Doc对象,批量插入2条数据
collection.insert(
    [
        Doc(id='2', vector=[0.2, 0.3, 0.4, 0.5], fields={'age': 20, 'name': 'zhangsan'}),
        Doc(id='3', vector=[0.3, 0.4, 0.5, 0.6], fields={'anykey': 'anyvalue'})    
    ]
)

Step4. 相似性检索

Python示例:

复制代码
rets = collection.query([0.1, 0.2, 0.3, 0.4], topk=2)

print(rets)

Step5. 删除Doc

Python示例:

复制代码
# 删除1条数据
collection.delete(ids=['1'])

Step6. 查看Collection统计信息

Python示例:

复制代码
stats = collection.stats()

print(stats)

Step7. 删除Collection

Python示例:

复制代码
client.delete('quickstart')

免费体验阿里云高性能向量检索服务:https://www.aliyun.com/product/ai/dashvector

相关推荐
Testopia3 分钟前
走一遍 AI 学习之路 —— AI实例系列说明
开发语言·人工智能·python
琅琊榜首20206 分钟前
用AI打造付费短篇小说脑洞:从灵感激活到落地变现
人工智能
机 _ 长6 分钟前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
Deepoch7 分钟前
Deepoc具身大模型开发板:重构农业采摘机器人的智能新生态
人工智能·科技·采摘机器人·农业机器人·具身模型·deepoc
Geoking.10 分钟前
Redis 的 RDB 与 AOF:持久化机制全解析
数据库·redis·缓存
草青工作室10 分钟前
java-FreeMarker3.4自定义异常处理
java·前端·python
美狐美颜sdk14 分钟前
抖动特效在直播美颜sdk中的实现方式与优化思路
前端·图像处理·人工智能·深度学习·美颜sdk·直播美颜sdk·美颜api
2501_9110676622 分钟前
光能筑底,智联全城——叁仟智慧太阳能路灯杆重构城市基础设施新生态
大数据·人工智能·重构
OpenCSG23 分钟前
AgenticOps x CSGHub:智能体时代的工程化革命,让企业 AI 落地可控可规模化
人工智能