如何快速使用向量检索服务DashVector?

免费体验阿里云高性能向量检索服务:https://www.aliyun.com/product/ai/dashvector


本文将介绍如何快速上手使用向量检索服务DashVector。

前提条件

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. Cluster Endpoint,可在控制台"Cluster详情"中查看。

Step1. 创建Client

使用HTTP API时可跳过本步骤。

Python示例:

复制代码
import dashvector

client = dashvector.Client(
    api_key='YOUR_API_KEY',
    endpoint='YOUR_CLUSTER_ENDPOINT'
)
assert client

Step2. 创建Collection

创建一个名称为quickstart,向量维度为4的collection。

Python示例:

复制代码
client.create(name='quickstart', dimension=4)

collection = client.get('quickstart')
assert collection

说明

1.在未指定距离度量参数时,将使用默认的Cosine距离度量方式。

2.在未指定向量数据类型时,将使用默认的Float数据类型。

Step3. 插入Doc

Python示例:

复制代码
from dashvector import Doc

# 通过dashvector.Doc对象,插入单条数据
collection.insert(Doc(id='1', vector=[0.1, 0.2, 0.3, 0.4]))

# 通过dashvector.Doc对象,批量插入2条数据
collection.insert(
    [
        Doc(id='2', vector=[0.2, 0.3, 0.4, 0.5], fields={'age': 20, 'name': 'zhangsan'}),
        Doc(id='3', vector=[0.3, 0.4, 0.5, 0.6], fields={'anykey': 'anyvalue'})    
    ]
)

Step4. 相似性检索

Python示例:

复制代码
rets = collection.query([0.1, 0.2, 0.3, 0.4], topk=2)

print(rets)

Step5. 删除Doc

Python示例:

复制代码
# 删除1条数据
collection.delete(ids=['1'])

Step6. 查看Collection统计信息

Python示例:

复制代码
stats = collection.stats()

print(stats)

Step7. 删除Collection

Python示例:

复制代码
client.delete('quickstart')

免费体验阿里云高性能向量检索服务:https://www.aliyun.com/product/ai/dashvector

相关推荐
小白量化10 分钟前
聚宽策略分享-1年化98国九条后中小板微盘小改
大数据·数据库·人工智能·量化·qmt
张拭心5 小时前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩5 小时前
大模型 MoE,你明白了么?
人工智能·llm
这个人懒得名字都没写6 小时前
Python包管理新纪元:uv
python·conda·pip·uv
有泽改之_6 小时前
leetcode146、OrderedDict与lru_cache
python·leetcode·链表
DBA小马哥6 小时前
Oracle迁移实战:如何轻松跨越异构数据库的学习与技术壁垒
数据库·学习·oracle·信创·国产化平替
Blossom.1187 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
是毛毛吧7 小时前
边打游戏边学Python的5个开源项目
python·开源·github·开源软件·pygame
t198751287 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab