如何快速使用向量检索服务DashVector?

免费体验阿里云高性能向量检索服务:https://www.aliyun.com/product/ai/dashvector


本文将介绍如何快速上手使用向量检索服务DashVector。

前提条件

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. Cluster Endpoint,可在控制台"Cluster详情"中查看。

Step1. 创建Client

使用HTTP API时可跳过本步骤。

Python示例:

复制代码
import dashvector

client = dashvector.Client(
    api_key='YOUR_API_KEY',
    endpoint='YOUR_CLUSTER_ENDPOINT'
)
assert client

Step2. 创建Collection

创建一个名称为quickstart,向量维度为4的collection。

Python示例:

复制代码
client.create(name='quickstart', dimension=4)

collection = client.get('quickstart')
assert collection

说明

1.在未指定距离度量参数时,将使用默认的Cosine距离度量方式。

2.在未指定向量数据类型时,将使用默认的Float数据类型。

Step3. 插入Doc

Python示例:

复制代码
from dashvector import Doc

# 通过dashvector.Doc对象,插入单条数据
collection.insert(Doc(id='1', vector=[0.1, 0.2, 0.3, 0.4]))

# 通过dashvector.Doc对象,批量插入2条数据
collection.insert(
    [
        Doc(id='2', vector=[0.2, 0.3, 0.4, 0.5], fields={'age': 20, 'name': 'zhangsan'}),
        Doc(id='3', vector=[0.3, 0.4, 0.5, 0.6], fields={'anykey': 'anyvalue'})    
    ]
)

Step4. 相似性检索

Python示例:

复制代码
rets = collection.query([0.1, 0.2, 0.3, 0.4], topk=2)

print(rets)

Step5. 删除Doc

Python示例:

复制代码
# 删除1条数据
collection.delete(ids=['1'])

Step6. 查看Collection统计信息

Python示例:

复制代码
stats = collection.stats()

print(stats)

Step7. 删除Collection

Python示例:

复制代码
client.delete('quickstart')

免费体验阿里云高性能向量检索服务:https://www.aliyun.com/product/ai/dashvector

相关推荐
风123456789~1 天前
【OceanBase专栏】脚本调用OB过程实验
数据库·oceanbase
shayudiandian1 天前
用深度学习实现语音识别系统
人工智能·深度学习·语音识别
爬山算法1 天前
Redis(158)Redis的主从同步问题如何解决?
数据库·redis·缓存
EkihzniY1 天前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通1 天前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
程序员小远1 天前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
2501_941148151 天前
多语言微服务架构与边缘计算技术实践:Python、Java、C++、Go深度解析
数据库
心无旁骛~1 天前
python多进程和多线程问题
开发语言·python
铅笔侠_小龙虾1 天前
深度学习理论推导--梯度下降法
人工智能·深度学习
星云数灵1 天前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda