【图文解说】BP神经网络与深度学习CNN的关系

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/

目录

BP神经网络是一个经典、有效的算法,即使时至今日,在传统的"小数据"领域仍有卓越的拟合效果。而BP神经网络的更大贡献是,它开启了后来的CNN\RNN等深度学习模型的大门。本文简单讲解BP神经网络是与深度学习CNN的关系。

一、BP神经网络网络是什么

BP神经网络模仿人的大脑,将输入层层前馈并激活,从而得到最终的输出,BP神经网络的拓扑结构如下:

BP更多用于数值拟合,这时最常用的是三层BP神经网络,三层的BP神经网络只要隐节点足够多就足以拟合任意曲线。

二、BP神经网络用于图象识别问题

1.1.BP神经网络解决图象识别问题

由于BP神经网络可以拟合任意曲线,因此搭配softmax函数,进一步解决模式识别问题,包括图像的识别,例如"手写数字识别"。

手写数字是28×28的黑白图片,将它展平后就是28×28=784的输入,再投入到三层BP神经网络中进行训练,最终用于预测图片属于0-9各个数字的概率。通过一个简单的训练,就可以得到97.6%的识别准确率:

详细代码与训练过程可参考:《BP神经网络识别手写数字》

1.2.BP神经网络解决图象识别问题的困难

在上述手写字识别的图象识别问题中,BP神经网络是毫无压力的,但如果企图用于更大的图片,会面临参数爆炸的问题。例如224×224=50176的图片,那么就有5W个输入,进一步地,网络的隐节点即使只有1W,也会有5亿个隐层权重,这将给求解带来极大的困难。

三、从BP到CNN深度学习模型

由于BP神经网络在图片识别上有参数维度灾难,那么最简单的就是减少输入的个数就可以了!是的,直接把224×224的图片,压缩成24×24的图片不就可以了吗?!

事实上,CNN就是这么做的,但它采用了更加智能的压缩方法--加入了卷积层与池化层来自动压缩图片。一个卷积层的示例如下,通过卷积核,可以将输入内容进行整合、压缩。

一个卷积神经网络CNN的基本结构如下:

CNN通过C(卷积层)与P(池化层),逐步将图片进行压缩,使得图片的Size缩小,小到一定程度时,再投入三层的BP神经网络中(F6,F7)中拟合输出就可以了。
备注:由于卷积层是稀疏连接,BP则是全连接,所以CNN中一般以F(Full Connect)层来指代BP。

使用pytorch实现一个卷积神经网络,用于数字识别,简简单单就能得到99.8%的准确率,可见CNN的效果要比BP要好得多。

从上可以看到,随着卷积与池化的加入,网络的层数就加深了,在后来,层数越来越深,也就有了深度学习一说。


相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂

《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂

《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

相关推荐
胡耀超4 小时前
DataOceanAI Dolphin(ffmpeg音频转化教程) 多语言(中国方言)语音识别系统部署与应用指南
python·深度学习·ffmpeg·音视频·语音识别·多模态·asr
HUIMU_4 小时前
DAY12&DAY13-新世纪DL(Deeplearning/深度学习)战士:破(改善神经网络)1
人工智能·深度学习
mit6.8245 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
Coovally AI模型快速验证6 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
科大饭桶6 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
努力还债的学术吗喽7 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写
weixin_507929918 小时前
第G7周:Semi-Supervised GAN 理论与实战
人工智能·pytorch·深度学习
AI波克布林10 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
Blossom.11811 小时前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
2502_9271612813 小时前
DAY 40 训练和测试的规范写法
人工智能·深度学习·机器学习