朝阳医院2018年销售数据 数据分析与可视化

代码及数据集下载传送门

数据分析与可视化-朝阳医院2018销售数据-ipynb+csv

实践内容

以朝阳医院2018年销售数据为例,目的是了解朝阳医院在2018年里的销售情况,这就需要知道几个业务指标,本次的分析目标是从销售数据中分析出以下业务指标:

(1)业务指标1:月均消费次数

月均消费次数 = 总消费次数 / 月份数(同一天内,同一个人所有消费算作一次消费)

(2)业务指标2:月均消费金额

月均消费金额 = 总消费金额 / 月份数

(3)客单价

客单价 = 总消费金额 / 总消费次数

(4)消费趋势(可视化展示,并根据可视化结果给出下属问题分析得出的结论)

a、分析每天的消费金额

b、分析每月的消费金额

c、分析药品销售情况(截取销售数量最多的前十种药品,并用条形图展示结果)

数据分析基本过程 数据分析基本过程包括:获取数据、数据清洗、构建模型、数据可视化以及消费趋势分析。

过程及结果

数据获取

  • 导入pandas库并读取数据,修改为DataFrame格式
  • 描述数据

使用shape方法查看数据形状;使用columns方法查看每一列的列表头内容;使用count()方法# 查看每一列数据统计数目

数据分析:数据清洗过程包括:选择子集、列名重命名、缺失数据处理、数据类型转换、数据排序及异常值处理。

  • 列明重命名

使用 rename 函数,把"购药时间" 改为 "销售时间"

  • 缺失数据处理

使用dropna函数删除缺失值

  • 数据类型转换

将字符串转为浮点型数据

字符串转日期

转换日期过程中不符合日期格式的数值会被转换为空值None,进行删除

  • 特征化处理

将列表转行为一维数据Series类型, 获取"销售时间"这一列数据, 调用函数去除星期,获取日期进行修改

  • 数据排序

按销售时间进行升序排序

  • 重置索引处理,查看描述统计信息
  • 异常值处理

将"销售数量"这一列中小于0的数排除掉

构建模型及数据可视化 数据清洗完成后,需要利用数据构建模型(就是计算相应的业务指标),并用可视化的方式呈现结果。

  • 删除重复数据后,计算总消费次数

使用.drop_duplicates方法清洗数据,查询数据有多少行

  • 按销售时间升序排序

使用sort_values方法和reset_index方法

  • 获取时间范围

分别获取最小最大时间值进行整除运算

  • 计算业务指标

月均消费次数 = 总消费次数 / 月份数(同一天内,同一个人所有消费算作一次消费)

月均消费金额 = 总消费金额 / 月份数

客单价 = 总消费金额 / 总消费次数

  • 按天消费金额可视化

导入所需库,并初始化画图

描述对象信息

  • 按月消费金额可视化

有天消费金额转换为月需要先进行一些处理

将'sale_date'列转换为datetime类型,设置为索引,按月份聚合数据

描绘按月消费金额图

  • 药品销售前十情况可视化

聚合统计各种药品的销售数量,对药品销售数量按降序排序

截取销售数量最多的十种药品,用条形图展示销售数量前十的药品

相关推荐
几两春秋梦_4 小时前
符号回归概念
人工智能·数据挖掘·回归
艾派森6 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
武子康11 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
Q81375746011 小时前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
布说在见11 小时前
魅力标签云,奇幻词云图 —— 数据可视化新境界
信息可视化·数据挖掘·数据分析
Tianyanxiao12 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
千汇数据的老司机13 小时前
webGIS在可视化大屏中的应用场景有哪些,有哪些类库
信息可视化·webgis·#web
FIT2CLOUD飞致云13 小时前
仪表板展示|DataEase看中国:历年双十一电商销售数据分析
数据分析·开源·数据可视化·dataease·双十一
小华同学ai13 小时前
AJ-Report:一款开源且非常强大的数据可视化大屏和报表工具
数据库·信息可视化·开源
皓74114 小时前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售