LLAVA数据集下载

LLAVA数据集下载

1. Data

Data file name Size
llava_instruct_150k.json 229 MB
llava_instruct_80k.json 229 MB
conversation_58k.json 126 MB
detail_23k.json 20.5 MB
complex_reasoning_77k.json 79.6 MB

1.1 Pretraining Dataset

The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see here for a detailed description of the dataset structure and how to download the images.

If you already have CC-3M dataset on your disk, the image names follow this format: GCC_train_000000000.jpg. You may edit the image field correspondingly if necessary.

Data Chat File Meta Data Size
CC-3M Concept-balanced 595K chat.json metadata.json 211 MB
LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json [metadata.json](#Data Chat File Meta Data Size CC-3M Concept-balanced 595K chat.json metadata.json 211 MB LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json metadata.json 181 MB) 181 MB

Important notice : Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload images.zip for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.

1.2 GPT-4 Prompts

We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the prompts folder for three kinds of questions: conversation, detail description, and complex reasoning.

They are organized in a format of system_message.txt for system message, pairs of abc_caps.txt for few-shot sample user input, and abc_conv.txt for few-shot sample reference output.

Note that you may find them in different format. For example, conversation is in jsonl, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: jsonl, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed!

2. Visual Instruction Tuning

---------2.1 指令调整数据(instruction tuning data)---------:

LLaVA-Instruct-150K

官方llava_v1_5_mix665k.json

---------2.2 图像(images)---------

COCO

官方train2017

GQA

官方images

OCR-VAQ

官方download script
多线程下载(速度更快)Github解决方案 以及 CSDN解决方案
处理好的数据集下载(方便快捷)Huggingface

TextVQA

官方train_val_images

VisualGenome

官方part1, part2

复制代码
playground
	├──data
	│	├── coco
	│	│   └── train2017
	│	├── gqa
	│	│   └── images
	│	├── ocr_vqa
	│	│   └── images
	│	├── textvqa
	│	│   └── train_images
	│	└── vg
	│	    ├── VG_100K
	│	    └── VG_100K_2
	└── ...   

3. Pretrained Model

---------3.1 语言大模型---------
vicuna-13b-v1.5
vicuna-7b-v1.5
---------3.2 视觉大模型---------
clip-vit-large-patch14-336
---------3.3 LLAVA-1.5预训练模型---------
LLAVA-1.5-13b
LLAVA-1.5-7b
---------3.4 LLAVA-lora微调训练的模型---------
LLAVA-1.5--13b-lora
LLAVA-1.5--7b-lora

相关推荐
勤奋的大熊猫几秒前
机器学习中的 Agent 是什么?
人工智能·机器学习·agent
Blossom.118几秒前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn
明朝百晓生3 分钟前
深入理解Vapnik-Chervonenkis(VC)维度:机器学习泛化能力的理论基础
人工智能·机器学习
信息快讯4 分钟前
机器学习驱动的智能化电池管理技术与应用
人工智能·机器学习·锂离子电池
勤奋的大熊猫5 分钟前
机器学习路径规划中的 net 和 netlist 分别是什么?
人工智能·机器学习·自动寻路
还有糕手6 分钟前
西南交通大学【机器学习实验6】
人工智能·机器学习
亚力山大抵11 分钟前
实验六-使用PyMySQL数据存储的Flask登录系统-实验七-集成Flask-SocketIO的实时通信系统
后端·python·flask
showyoui19 分钟前
Python 闭包(Closure)实战总结
开发语言·python
静心问道36 分钟前
self-consistency:自洽性提升语言模型中的链式思维推理能力
人工智能·语言模型·大模型
上海锝秉工控1 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全