LLAVA数据集下载

LLAVA数据集下载

1. Data

Data file name Size
llava_instruct_150k.json 229 MB
llava_instruct_80k.json 229 MB
conversation_58k.json 126 MB
detail_23k.json 20.5 MB
complex_reasoning_77k.json 79.6 MB

1.1 Pretraining Dataset

The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see here for a detailed description of the dataset structure and how to download the images.

If you already have CC-3M dataset on your disk, the image names follow this format: GCC_train_000000000.jpg. You may edit the image field correspondingly if necessary.

Data Chat File Meta Data Size
CC-3M Concept-balanced 595K chat.json metadata.json 211 MB
LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json [metadata.json](#Data Chat File Meta Data Size CC-3M Concept-balanced 595K chat.json metadata.json 211 MB LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json metadata.json 181 MB) 181 MB

Important notice : Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload images.zip for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.

1.2 GPT-4 Prompts

We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the prompts folder for three kinds of questions: conversation, detail description, and complex reasoning.

They are organized in a format of system_message.txt for system message, pairs of abc_caps.txt for few-shot sample user input, and abc_conv.txt for few-shot sample reference output.

Note that you may find them in different format. For example, conversation is in jsonl, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: jsonl, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed!

2. Visual Instruction Tuning

---------2.1 指令调整数据(instruction tuning data)---------:

LLaVA-Instruct-150K

官方llava_v1_5_mix665k.json

---------2.2 图像(images)---------

COCO

官方train2017

GQA

官方images

OCR-VAQ

官方download script
多线程下载(速度更快)Github解决方案 以及 CSDN解决方案
处理好的数据集下载(方便快捷)Huggingface

TextVQA

官方train_val_images

VisualGenome

官方part1, part2

复制代码
playground
	├──data
	│	├── coco
	│	│   └── train2017
	│	├── gqa
	│	│   └── images
	│	├── ocr_vqa
	│	│   └── images
	│	├── textvqa
	│	│   └── train_images
	│	└── vg
	│	    ├── VG_100K
	│	    └── VG_100K_2
	└── ...   

3. Pretrained Model

---------3.1 语言大模型---------
vicuna-13b-v1.5
vicuna-7b-v1.5
---------3.2 视觉大模型---------
clip-vit-large-patch14-336
---------3.3 LLAVA-1.5预训练模型---------
LLAVA-1.5-13b
LLAVA-1.5-7b
---------3.4 LLAVA-lora微调训练的模型---------
LLAVA-1.5--13b-lora
LLAVA-1.5--7b-lora

相关推荐
华奥系科技1 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE1 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
互联网杂货铺1 小时前
完美搭建appium自动化环境
自动化测试·软件测试·python·测试工具·职场和发展·appium·测试用例
b***25111 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint1 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志1 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
莱茵菜苗2 小时前
Python打卡训练营day46——2025.06.06
开发语言·python
爱学习的小道长2 小时前
Python 构建法律DeepSeek RAG
开发语言·python
dudly2 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx992 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网