LLAVA数据集下载

LLAVA数据集下载

1. Data

Data file name Size
llava_instruct_150k.json 229 MB
llava_instruct_80k.json 229 MB
conversation_58k.json 126 MB
detail_23k.json 20.5 MB
complex_reasoning_77k.json 79.6 MB

1.1 Pretraining Dataset

The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see here for a detailed description of the dataset structure and how to download the images.

If you already have CC-3M dataset on your disk, the image names follow this format: GCC_train_000000000.jpg. You may edit the image field correspondingly if necessary.

Data Chat File Meta Data Size
CC-3M Concept-balanced 595K chat.json metadata.json 211 MB
LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json [metadata.json](#Data Chat File Meta Data Size CC-3M Concept-balanced 595K chat.json metadata.json 211 MB LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json metadata.json 181 MB) 181 MB

Important notice : Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload images.zip for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.

1.2 GPT-4 Prompts

We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the prompts folder for three kinds of questions: conversation, detail description, and complex reasoning.

They are organized in a format of system_message.txt for system message, pairs of abc_caps.txt for few-shot sample user input, and abc_conv.txt for few-shot sample reference output.

Note that you may find them in different format. For example, conversation is in jsonl, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: jsonl, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed!

2. Visual Instruction Tuning

---------2.1 指令调整数据(instruction tuning data)---------:

LLaVA-Instruct-150K

官方llava_v1_5_mix665k.json

---------2.2 图像(images)---------

COCO

官方train2017

GQA

官方images

OCR-VAQ

官方download script
多线程下载(速度更快)Github解决方案 以及 CSDN解决方案
处理好的数据集下载(方便快捷)Huggingface

TextVQA

官方train_val_images

VisualGenome

官方part1, part2

playground
	├──data
	│	├── coco
	│	│   └── train2017
	│	├── gqa
	│	│   └── images
	│	├── ocr_vqa
	│	│   └── images
	│	├── textvqa
	│	│   └── train_images
	│	└── vg
	│	    ├── VG_100K
	│	    └── VG_100K_2
	└── ...   

3. Pretrained Model

---------3.1 语言大模型---------
vicuna-13b-v1.5
vicuna-7b-v1.5
---------3.2 视觉大模型---------
clip-vit-large-patch14-336
---------3.3 LLAVA-1.5预训练模型---------
LLAVA-1.5-13b
LLAVA-1.5-7b
---------3.4 LLAVA-lora微调训练的模型---------
LLAVA-1.5--13b-lora
LLAVA-1.5--7b-lora

相关推荐
半导体老登1 分钟前
新能源汽车核心元件揭秘:二极管、三极管结构与工作原理解析(2/2)
人工智能·单片机·嵌入式硬件·汽车
pchmi5 分钟前
CNN常用卷积核
深度学习·神经网络·机器学习·cnn·c#
Orange--Lin17 分钟前
【用deepseek和chatgpt做算法竞赛】——还得DeepSeek来 -Minimum Cost Trees_5
人工智能·算法·chatgpt
范桂飓22 分钟前
大规模 RDMA AI 组网技术创新:算法和可编程硬件的深度融合
人工智能
wang_yb32 分钟前
『Python底层原理』--Python属性的工作原理
python·databook
deflag35 分钟前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
量化投资技术35 分钟前
【量化策略】趋势跟踪策略
python·量化交易·量化·量化投资·qmt·miniqmt
pzx_00140 分钟前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习
海域云赵从友1 小时前
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
人工智能·安全
伊一大数据&人工智能学习日志1 小时前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘