LLAVA数据集下载

LLAVA数据集下载

1. Data

Data file name Size
llava_instruct_150k.json 229 MB
llava_instruct_80k.json 229 MB
conversation_58k.json 126 MB
detail_23k.json 20.5 MB
complex_reasoning_77k.json 79.6 MB

1.1 Pretraining Dataset

The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see here for a detailed description of the dataset structure and how to download the images.

If you already have CC-3M dataset on your disk, the image names follow this format: GCC_train_000000000.jpg. You may edit the image field correspondingly if necessary.

Data Chat File Meta Data Size
CC-3M Concept-balanced 595K chat.json metadata.json 211 MB
LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json [metadata.json](#Data Chat File Meta Data Size CC-3M Concept-balanced 595K chat.json metadata.json 211 MB LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json metadata.json 181 MB) 181 MB

Important notice : Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload images.zip for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.

1.2 GPT-4 Prompts

We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the prompts folder for three kinds of questions: conversation, detail description, and complex reasoning.

They are organized in a format of system_message.txt for system message, pairs of abc_caps.txt for few-shot sample user input, and abc_conv.txt for few-shot sample reference output.

Note that you may find them in different format. For example, conversation is in jsonl, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: jsonl, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed!

2. Visual Instruction Tuning

---------2.1 指令调整数据(instruction tuning data)---------:

LLaVA-Instruct-150K

官方llava_v1_5_mix665k.json

---------2.2 图像(images)---------

COCO

官方train2017

GQA

官方images

OCR-VAQ

官方download script
多线程下载(速度更快)Github解决方案 以及 CSDN解决方案
处理好的数据集下载(方便快捷)Huggingface

TextVQA

官方train_val_images

VisualGenome

官方part1, part2

复制代码
playground
	├──data
	│	├── coco
	│	│   └── train2017
	│	├── gqa
	│	│   └── images
	│	├── ocr_vqa
	│	│   └── images
	│	├── textvqa
	│	│   └── train_images
	│	└── vg
	│	    ├── VG_100K
	│	    └── VG_100K_2
	└── ...   

3. Pretrained Model

---------3.1 语言大模型---------
vicuna-13b-v1.5
vicuna-7b-v1.5
---------3.2 视觉大模型---------
clip-vit-large-patch14-336
---------3.3 LLAVA-1.5预训练模型---------
LLAVA-1.5-13b
LLAVA-1.5-7b
---------3.4 LLAVA-lora微调训练的模型---------
LLAVA-1.5--13b-lora
LLAVA-1.5--7b-lora

相关推荐
阿坡RPA3 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049933 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心3 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
JavaEdge在掘金5 小时前
ssl.SSLCertVerificationError报错解决方案
python
我不会编程5556 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
凯子坚持 c6 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
老歌老听老掉牙6 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
满怀10156 小时前
Python入门(7):模块
python
无名之逆6 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust