LLAVA数据集下载

LLAVA数据集下载

1. Data

Data file name Size
llava_instruct_150k.json 229 MB
llava_instruct_80k.json 229 MB
conversation_58k.json 126 MB
detail_23k.json 20.5 MB
complex_reasoning_77k.json 79.6 MB

1.1 Pretraining Dataset

The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see here for a detailed description of the dataset structure and how to download the images.

If you already have CC-3M dataset on your disk, the image names follow this format: GCC_train_000000000.jpg. You may edit the image field correspondingly if necessary.

Data Chat File Meta Data Size
CC-3M Concept-balanced 595K chat.json metadata.json 211 MB
LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json [metadata.json](#Data Chat File Meta Data Size CC-3M Concept-balanced 595K chat.json metadata.json 211 MB LAION/CC/SBU BLIP-Caption Concept-balanced 558K blip_laion_cc_sbu_558k.json metadata.json 181 MB) 181 MB

Important notice : Upon the request from the community, as ~15% images of the original CC-3M dataset are no longer accessible, we upload images.zip for better reproducing our work in research community. It must not be used for any other purposes. The use of these images must comply with the CC-3M license. This may be taken down at any time when requested by the original CC-3M dataset owner or owners of the referenced images.

1.2 GPT-4 Prompts

We provide our prompts and few-shot samples for GPT-4 queries, to better facilitate research in this domain. Please check out the prompts folder for three kinds of questions: conversation, detail description, and complex reasoning.

They are organized in a format of system_message.txt for system message, pairs of abc_caps.txt for few-shot sample user input, and abc_conv.txt for few-shot sample reference output.

Note that you may find them in different format. For example, conversation is in jsonl, and detail description is answer-only. The selected format in our preliminary experiments works slightly better than a limited set of alternatives that we tried: jsonl, more natural format, answer-only. If interested, you may try other variants or conduct more careful study in this. Contributions are welcomed!

2. Visual Instruction Tuning

---------2.1 指令调整数据(instruction tuning data)---------:

LLaVA-Instruct-150K

官方llava_v1_5_mix665k.json

---------2.2 图像(images)---------

COCO

官方train2017

GQA

官方images

OCR-VAQ

官方download script
多线程下载(速度更快)Github解决方案 以及 CSDN解决方案
处理好的数据集下载(方便快捷)Huggingface

TextVQA

官方train_val_images

VisualGenome

官方part1, part2

复制代码
playground
	├──data
	│	├── coco
	│	│   └── train2017
	│	├── gqa
	│	│   └── images
	│	├── ocr_vqa
	│	│   └── images
	│	├── textvqa
	│	│   └── train_images
	│	└── vg
	│	    ├── VG_100K
	│	    └── VG_100K_2
	└── ...   

3. Pretrained Model

---------3.1 语言大模型---------
vicuna-13b-v1.5
vicuna-7b-v1.5
---------3.2 视觉大模型---------
clip-vit-large-patch14-336
---------3.3 LLAVA-1.5预训练模型---------
LLAVA-1.5-13b
LLAVA-1.5-7b
---------3.4 LLAVA-lora微调训练的模型---------
LLAVA-1.5--13b-lora
LLAVA-1.5--7b-lora

相关推荐
How_doyou_do10 分钟前
备战菊厂笔试4
python·算法·leetcode
Tiny番茄24 分钟前
Multimodal models —— CLIP,LLava,QWen
人工智能
Wnq1007240 分钟前
工业场景轮式巡检机器人纯视觉识别导航的优势剖析与前景展望
人工智能·算法·计算机视觉·激光雷达·视觉导航·人形机器人·巡检机器人
(・Д・)ノ1 小时前
python打卡day27
开发语言·python
无心水1 小时前
【程序员AI入门:模型】19.开源模型工程化全攻略:从选型部署到高效集成,LangChain与One-API双剑合璧
人工智能·langchain·开源·ai入门·程序员ai开发入门·程序员的 ai 开发第一课·程序员ai入门
有梦想的攻城狮1 小时前
大语言模型与多模态模型比较
人工智能·语言模型·自然语言处理·llm·大语言模型
小oo呆2 小时前
【学习心得】Jupyter 如何在conda的base环境中其他虚拟环境内核
python·jupyter·conda
九章云极AladdinEdu2 小时前
GPU与NPU异构计算任务划分算法研究:基于强化学习的Transformer负载均衡实践
java·开发语言·人工智能·深度学习·测试工具·负载均衡·transformer
量子-Alex2 小时前
【目标检测】RT-DETR
人工智能·目标检测·计算机视觉
2201_754918412 小时前
OpenCV 图像透视变换详解
人工智能·opencv·计算机视觉