轮廓系数【python,机器学习,算法】

用途

使用轮廓系数评估聚类质量。聚类质量的评价方法,本质上,都是根据簇内和簇间的效果对比进行衡量。

定义

假设样本集合为 S = a 1 , a 2 , a 3 , . . . , a n S={a_1,a_2,a_3,...,a_n} S=a1,a2,a3,...,an,该样划分成 4 个聚类 G 1 , G 2 , G 3 , G 4 G_1,G_2,G_3,G_4 G1,G2,G3,G4,对于每个样本 a i a_i ai,

  1. 计算 a i a_i ai样本到 a i a_i ai所在聚类 G 1 G_1 G1中的每个样本的距离,然后取平均值 G a i ˉ \bar{Ga_i} Gaiˉ。
  2. 分别计算 a i a_i ai到其他聚类的平均距离,取最小的平均值 G b i ˉ \bar{Gb_i} Gbiˉ
  3. 那么 a i a_i ai的聚类质量 S ( a i ) = G b i ˉ − G a i ˉ m a x ( G b i ˉ , G a i ˉ ) S(a_i)=\frac{\bar{Gb_i}-\bar{Ga_i}}{max(\bar{Gb_i},\bar{Ga_i})} S(ai)=max(Gbiˉ,Gaiˉ)Gbiˉ−Gaiˉ。
  4. 重复上述 1-3 步骤,对数据集中的每个对象计算轮廓系数然后取平均值作为聚类的质量度量。

下面的示例演示了如何使用轮廓系数计算聚类的质量:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
from sklearn.metrics import silhouette_score

silhouettteScore = []
data = load_iris()
X = data.data
y = data.target
for i in range(2, 15):
    # 构建并训练模型
    kmeans = KMeans(n_clusters=i, random_state=123).fit(X)
    score = silhouette_score(X, kmeans.labels_)
    silhouettteScore.append(score)
plt.figure(figsize=(10, 6))
plt.plot(range(2, 15), silhouettteScore, linewidth=1.5, linestyle="-")
plt.show()
相关推荐
SmallBambooCode19 分钟前
【Flask】在Flask应用中使用Flask-Limiter进行简单CC攻击防御
后端·python·flask
抱抱宝30 分钟前
Pyecharts之图表样式深度定制
python·信息可视化·数据分析
码界筑梦坊39 分钟前
基于Flask的哔哩哔哩评论数据可视化分析系统的设计与实现
python·信息可视化·flask·毕业设计
大懒猫软件1 小时前
如何有效使用Python爬虫将网页数据存储到Word文档
爬虫·python·自动化·word
大数据魔法师1 小时前
1905电影网中国地区电影数据分析(二) - 数据分析与可视化
python·数据分析
&白帝&1 小时前
JAVA JDK7时间相关类
java·开发语言·python
笔触狂放2 小时前
第一章 语音识别概述
人工智能·python·机器学习·语音识别
ZzYH222 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
小炫y2 小时前
IBM 后端开发(二)
python
迪小莫学AI3 小时前
【力扣每日一题】LeetCode 2412: 完成所有交易的初始最少钱数
算法·leetcode·职场和发展