轮廓系数【python,机器学习,算法】

用途

使用轮廓系数评估聚类质量。聚类质量的评价方法,本质上,都是根据簇内和簇间的效果对比进行衡量。

定义

假设样本集合为 S = a 1 , a 2 , a 3 , . . . , a n S={a_1,a_2,a_3,...,a_n} S=a1,a2,a3,...,an,该样划分成 4 个聚类 G 1 , G 2 , G 3 , G 4 G_1,G_2,G_3,G_4 G1,G2,G3,G4,对于每个样本 a i a_i ai,

  1. 计算 a i a_i ai样本到 a i a_i ai所在聚类 G 1 G_1 G1中的每个样本的距离,然后取平均值 G a i ˉ \bar{Ga_i} Gaiˉ。
  2. 分别计算 a i a_i ai到其他聚类的平均距离,取最小的平均值 G b i ˉ \bar{Gb_i} Gbiˉ
  3. 那么 a i a_i ai的聚类质量 S ( a i ) = G b i ˉ − G a i ˉ m a x ( G b i ˉ , G a i ˉ ) S(a_i)=\frac{\bar{Gb_i}-\bar{Ga_i}}{max(\bar{Gb_i},\bar{Ga_i})} S(ai)=max(Gbiˉ,Gaiˉ)Gbiˉ−Gaiˉ。
  4. 重复上述 1-3 步骤,对数据集中的每个对象计算轮廓系数然后取平均值作为聚类的质量度量。

下面的示例演示了如何使用轮廓系数计算聚类的质量:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
from sklearn.metrics import silhouette_score

silhouettteScore = []
data = load_iris()
X = data.data
y = data.target
for i in range(2, 15):
    # 构建并训练模型
    kmeans = KMeans(n_clusters=i, random_state=123).fit(X)
    score = silhouette_score(X, kmeans.labels_)
    silhouettteScore.append(score)
plt.figure(figsize=(10, 6))
plt.plot(range(2, 15), silhouettteScore, linewidth=1.5, linestyle="-")
plt.show()
相关推荐
serve the people13 小时前
tensorflow tf.function 的两种执行模式(计算图执行 vs Eager 执行)的关键差异
人工智能·python·tensorflow
拾贰_C13 小时前
[python ]anaconda
开发语言·python
TL滕13 小时前
从0开始学算法——第三天(数据结构的多样性)
数据结构·笔记·学习·算法
V1ncent Chen13 小时前
人工智能的基石之一:算法
人工智能·算法
serve the people13 小时前
tensorflow中的计算图是什么
人工智能·python·tensorflow
子午13 小时前
【动物识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
7ioik13 小时前
新增的类以及常用的方法有哪些?
java·开发语言·python
无限进步_13 小时前
深入理解顺序表:从原理到完整实现
c语言·开发语言·数据结构·c++·算法·链表·visual studio
谷玉树13 小时前
框架分类与选型:一种清晰的三层分类法
人工智能·pytorch·机器学习·架构·django·前端框架