轮廓系数【python,机器学习,算法】

用途

使用轮廓系数评估聚类质量。聚类质量的评价方法,本质上,都是根据簇内和簇间的效果对比进行衡量。

定义

假设样本集合为 S = a 1 , a 2 , a 3 , . . . , a n S={a_1,a_2,a_3,...,a_n} S=a1,a2,a3,...,an,该样划分成 4 个聚类 G 1 , G 2 , G 3 , G 4 G_1,G_2,G_3,G_4 G1,G2,G3,G4,对于每个样本 a i a_i ai,

  1. 计算 a i a_i ai样本到 a i a_i ai所在聚类 G 1 G_1 G1中的每个样本的距离,然后取平均值 G a i ˉ \bar{Ga_i} Gaiˉ。
  2. 分别计算 a i a_i ai到其他聚类的平均距离,取最小的平均值 G b i ˉ \bar{Gb_i} Gbiˉ
  3. 那么 a i a_i ai的聚类质量 S ( a i ) = G b i ˉ − G a i ˉ m a x ( G b i ˉ , G a i ˉ ) S(a_i)=\frac{\bar{Gb_i}-\bar{Ga_i}}{max(\bar{Gb_i},\bar{Ga_i})} S(ai)=max(Gbiˉ,Gaiˉ)Gbiˉ−Gaiˉ。
  4. 重复上述 1-3 步骤,对数据集中的每个对象计算轮廓系数然后取平均值作为聚类的质量度量。

下面的示例演示了如何使用轮廓系数计算聚类的质量:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
from sklearn.metrics import silhouette_score

silhouettteScore = []
data = load_iris()
X = data.data
y = data.target
for i in range(2, 15):
    # 构建并训练模型
    kmeans = KMeans(n_clusters=i, random_state=123).fit(X)
    score = silhouette_score(X, kmeans.labels_)
    silhouettteScore.append(score)
plt.figure(figsize=(10, 6))
plt.plot(range(2, 15), silhouettteScore, linewidth=1.5, linestyle="-")
plt.show()
相关推荐
夏乌_Wx4 分钟前
练题100天——DAY22:数字拼接+只出现一次的数字
java·数据结构·算法
listhi5205 分钟前
MOEAD算法实现详解(基于Python与MATLAB)
python·算法·matlab
byzh_rc8 分钟前
[认知计算] 循环神经网络
人工智能·python·rnn·深度学习·神经网络·机器学习
黑客思维者14 分钟前
Python 机器学习TensorFlow 2.x 入门实战:CNN/RNN/Transformer
python·机器学习·tensorflow
二川bro23 分钟前
类型错误详解:Python TypeError排查手册
android·java·python
李玮豪Jimmy33 分钟前
Day32:动态规划part5(完全背包、518.零钱兑换 II、377.组合总和 Ⅳ、70.爬楼梯 (进阶))
算法·动态规划
rit843249938 分钟前
基于GA-GM(1,1)模型的航空发电机状态趋势分析实现
算法
CQ_YM39 分钟前
数据结构之哈希表
数据结构·算法·哈希算法·哈希表
计算机学姐40 分钟前
基于Python的B站数据分析及可视化系统【2026最新】
开发语言·vue.js·python·信息可视化·数据挖掘·数据分析·推荐算法
haiyu_y41 分钟前
Day 33 类的装饰器
python