轮廓系数【python,机器学习,算法】

用途

使用轮廓系数评估聚类质量。聚类质量的评价方法,本质上,都是根据簇内和簇间的效果对比进行衡量。

定义

假设样本集合为 S = a 1 , a 2 , a 3 , . . . , a n S={a_1,a_2,a_3,...,a_n} S=a1,a2,a3,...,an,该样划分成 4 个聚类 G 1 , G 2 , G 3 , G 4 G_1,G_2,G_3,G_4 G1,G2,G3,G4,对于每个样本 a i a_i ai,

  1. 计算 a i a_i ai样本到 a i a_i ai所在聚类 G 1 G_1 G1中的每个样本的距离,然后取平均值 G a i ˉ \bar{Ga_i} Gaiˉ。
  2. 分别计算 a i a_i ai到其他聚类的平均距离,取最小的平均值 G b i ˉ \bar{Gb_i} Gbiˉ
  3. 那么 a i a_i ai的聚类质量 S ( a i ) = G b i ˉ − G a i ˉ m a x ( G b i ˉ , G a i ˉ ) S(a_i)=\frac{\bar{Gb_i}-\bar{Ga_i}}{max(\bar{Gb_i},\bar{Ga_i})} S(ai)=max(Gbiˉ,Gaiˉ)Gbiˉ−Gaiˉ。
  4. 重复上述 1-3 步骤,对数据集中的每个对象计算轮廓系数然后取平均值作为聚类的质量度量。

下面的示例演示了如何使用轮廓系数计算聚类的质量:

python 复制代码
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
from sklearn.metrics import silhouette_score

silhouettteScore = []
data = load_iris()
X = data.data
y = data.target
for i in range(2, 15):
    # 构建并训练模型
    kmeans = KMeans(n_clusters=i, random_state=123).fit(X)
    score = silhouette_score(X, kmeans.labels_)
    silhouettteScore.append(score)
plt.figure(figsize=(10, 6))
plt.plot(range(2, 15), silhouettteScore, linewidth=1.5, linestyle="-")
plt.show()
相关推荐
Word码1 分钟前
leetcode260.只出现一次的数字III
算法
sonadorje5 分钟前
什么是半正定 (PSD) 矩阵
决策树·机器学习·矩阵
MM_MS13 分钟前
Halcon图像采集助手、ROI操作和画图、ROI实现区域与轮廓之间的相互转换、区域的交集差集取反
图像处理·人工智能·数码相机·算法·目标检测·计算机视觉·视觉检测
莫非王土也非王臣15 分钟前
网页端的TensorFlow开发实践
人工智能·python·tensorflow
喵手19 分钟前
Python爬虫零基础入门【第七章:动态页面入门(Playwright)·第3节】优先 API:用 Network 找接口,回到 Requests(更稳定)!
爬虫·python·playwright·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·优先 api
我送炭你添花28 分钟前
Pelco KBD300A 模拟器:12.设备仿真与虚拟响应生成
python·自动化·运维开发
智者知已应修善业29 分钟前
【输出一个N*N的01矩阵,表示最后的汉字点阵图】2024-10-22
c语言·数据结构·c++·经验分享·笔记·算法·矩阵
uesowys42 分钟前
华为OD算法开发指导-二级索引
数据结构·算法·华为od
一晌小贪欢1 小时前
深入解析 Python 3.11 版本迭代:性能飞跃与更优雅的错误处理
python·python基础·python3·python3.11·python小白
理智.6291 小时前
根据requirements.txt 完成环境中的依赖库导入
python·conda·pip