动手学深度学习(Pytorch版)代码实践 -卷积神经网络-17读写文件

17读写文件

python 复制代码
#保存训练的模型
#当运行一个耗时较长的训练过程时, 
#最佳的做法是定期保存中间结果, 
#以确保在服务器电源被不小心断掉时,我们不会损失几天的计算结果。

#加载和保存张量
import torch
import os
from torch import nn
from torch.nn import functional as F

# 定义要保存的文件路径
file_path = '..\\limuPytorch\\module\\'

# 获取目录名
directory = os.path.dirname(file_path)

# 如果目录不存在,则创建它
if not os.path.exists(directory):
    os.makedirs(directory)

#调用load和save函数分别读写
x = torch.arange(4)
torch.save(x, file_path  + 'x-file')
x2 = torch.load(file_path  + 'x-file')
print(x2)
"""
tensor([0, 1, 2, 3])
"""

#存储一个张量列表,然后把它们读回内存
y = torch.zeros(4)
torch.save([x, y],file_path + 'x-files')
x2, y2 = torch.load(file_path + 'x-files')
print(x2,y2)
"""
tensor([0, 1, 2, 3]) tensor([0., 0., 0., 0.])
"""

#写入或读取从字符串映射到张量的字典
mydict = {'x': x, 'y': y}
torch.save(mydict, file_path + 'mydict')
mydict2 = torch.load(file_path + 'mydict')
print(mydict2)
"""
{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}
"""

#加载和保存模型参数
"""
保存单个权重向量(或其他张量)确实有用, 
但是如果我们想保存整个模型,并在以后加载它们, 
单独保存每个向量则会变得很麻烦。 
毕竟,我们可能有数百个参数散布在各处。
因此,深度学习框架提供了内置函数来保存和加载整个网络。 
需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。 
例如,如果我们有一个3层多层感知机,我们需要单独指定架构。 
因为模型本身可以包含任意代码,所以模型本身难以序列化。 
因此,为了恢复模型,我们需要用代码生成架构, 然后从磁盘加载参数。
"""

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

#将模型的参数存储在一个叫做"mlp.params"的文件中
#net.state_dict() ,返回一个包含模型所有可学习参数(例如权重和偏置)的字典。
torch.save(net.state_dict(), file_path + 'mlp.params')

#恢复模型
#实例化了原始多层感知机模型的一个备份
clone = MLP()

#.to() 方法: 如果在保存或加载过程中使用了 GPU 或 CPU,请确保设备一致,
#clone.to('cuda') 或 clone.to('cpu')


#load_state_dict:将保存的状态字典加载到模型实例中。
clone.load_state_dict(torch.load(file_path + 'mlp.params'))
print(clone.eval())
"""
MLP(
  (hidden): Linear(in_features=20, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)
"""

#两个实例具有相同的模型参数,
#在输入相同的X时, 两个实例的计算结果应该相同。
Y_clone = clone(X)
print(Y_clone == Y)
"""
tensor([[True, True, True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True, True, True]])
"""
相关推荐
Moniane17 分钟前
UTB(Ultra-Thin Body)技术:原理、制造与未来展望
深度学习
盼小辉丶21 分钟前
TensorFlow深度学习实战——链路预测
深度学习·tensorflow·图神经网络
小白狮ww2 小时前
清华联合字节推出 HuMo,实现三模态协同生成人物视频
人工智能·深度学习·机器学习·音视频·视频生成·多模态模型·人物视频
没有梦想的咸鱼185-1037-166310 小时前
AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·chatgpt·数据分析
周杰伦_Jay10 小时前
【MCP开发部署流程表格分析】MCP架构解析、开发流程、部署方案、安全性分析
人工智能·深度学习·opencv·机器学习·架构·transformer
晚霞apple10 小时前
多模态大模型的前沿算法综述
论文阅读·人工智能·深度学习·神经网络·机器学习
wanzhong233311 小时前
Deepseek-ocr论文精读
深度学习·ocr·多模态·deepseek
强德亨上校13 小时前
神经网络详解
人工智能·深度学习·神经网络
AI模块工坊13 小时前
AAAI 2025 | 即插即用,川大Mesorch刷新SOTA,用「介观」Transformer架构终结图像造假
人工智能·深度学习·计算机视觉·架构·transformer
周杰伦_Jay13 小时前
【OpenManus深度解析】MetaGPT团队打造的开源AI智能体框架,打破Manus闭源壁垒。包括架构分层、关键技术特点等内容
人工智能·深度学习·opencv·架构·开源