YOLO模型评价指标

在模型训练完成之后,需要对模型的优劣作出评估,YOLO系列算法的评价指标包括:

  1. 准确率(Precision):指模型预测为正样本中实际为正样本的比例。

𝑇𝑃、𝐹𝑃、𝑇𝑁、𝐹𝑁分别代表被模型预测为正类的正样本、被 模型预测为正类的负样本、被模型预测为负类的负样本和被模型预测为负类的正 样本。𝑃表示正确预测的正样本在所有被预测为正样本中的百分比,𝑅表示正确预 测的正样本在所有正样本中的百分比。|𝑄𝑅|表示目标类别的数量,𝑞表示检测目标 的类别,𝐴𝑃(𝑞)表示类别𝑞的𝐴𝑃值。

  1. 召回率(Recall):指实际为正样本中模型预测为正样本的比例。

  2. F1值(F1-score):综合考虑准确率和召回率的指标,由准确率和召回率的加权调和平均值计算而得。

  3. 平均准确率均值(mean average precision,mAP):用于衡量模型在不同类别上的平均准确率。mAP是多个类别准确率的均值。

5.FPS(Frame Per Second):评估模型检测速度时常用的指标是 FPS,即每秒帧率, 表示每秒内可以检测的图片数量。

6.参数量(Params):Params 被用来评估模型的空间复杂度。

7.浮点运算次数(GFLOPs):GFLOPs 被用来评估模型的 时间复杂度。

**论文中需要使用这些指标,对比不同模型,确定哪些模型是优秀的。**如图所示:

相关推荐
_殊途39 分钟前
《Java HashMap底层原理全解析(源码+性能+面试)》
java·数据结构·算法
橡晟3 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子3 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
倔强青铜33 小时前
苦练Python第18天:Python异常处理锦囊
开发语言·python
Leah01053 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai
企鹅与蟒蛇4 小时前
Ubuntu-25.04 Wayland桌面环境安装Anaconda3之后无法启动anaconda-navigator问题解决
linux·运维·python·ubuntu·anaconda
autobaba4 小时前
编写bat文件自动打开chrome浏览器,并通过selenium抓取浏览器操作chrome
chrome·python·selenium·rpa
珊瑚里的鱼4 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
Rvelamen5 小时前
LLM-SECURITY-PROMPTS大模型提示词攻击测评基准
人工智能·python·安全
秋说5 小时前
【PTA数据结构 | C语言版】顺序队列的3个操作
c语言·数据结构·算法