YOLO模型评价指标

在模型训练完成之后,需要对模型的优劣作出评估,YOLO系列算法的评价指标包括:

  1. 准确率(Precision):指模型预测为正样本中实际为正样本的比例。

𝑇𝑃、𝐹𝑃、𝑇𝑁、𝐹𝑁分别代表被模型预测为正类的正样本、被 模型预测为正类的负样本、被模型预测为负类的负样本和被模型预测为负类的正 样本。𝑃表示正确预测的正样本在所有被预测为正样本中的百分比,𝑅表示正确预 测的正样本在所有正样本中的百分比。|𝑄𝑅|表示目标类别的数量,𝑞表示检测目标 的类别,𝐴𝑃(𝑞)表示类别𝑞的𝐴𝑃值。

  1. 召回率(Recall):指实际为正样本中模型预测为正样本的比例。

  2. F1值(F1-score):综合考虑准确率和召回率的指标,由准确率和召回率的加权调和平均值计算而得。

  3. 平均准确率均值(mean average precision,mAP):用于衡量模型在不同类别上的平均准确率。mAP是多个类别准确率的均值。

5.FPS(Frame Per Second):评估模型检测速度时常用的指标是 FPS,即每秒帧率, 表示每秒内可以检测的图片数量。

6.参数量(Params):Params 被用来评估模型的空间复杂度。

7.浮点运算次数(GFLOPs):GFLOPs 被用来评估模型的 时间复杂度。

**论文中需要使用这些指标,对比不同模型,确定哪些模型是优秀的。**如图所示:

相关推荐
冰西瓜60020 分钟前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术21 分钟前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
长安er44 分钟前
LeetCode215/347/295 堆相关理论与题目
java·数据结构·算法·leetcode·
元亓亓亓1 小时前
LeetCode热题100--62. 不同路径--中等
算法·leetcode·职场和发展
在屏幕前出油1 小时前
二、Python面向对象编程基础——理解self
开发语言·python
小白菜又菜1 小时前
Leetcode 1925. Count Square Sum Triples
算法·leetcode
阿方索1 小时前
python文件与数据格式化
开发语言·python
登山人在路上2 小时前
Nginx三种会话保持算法对比
算法·哈希算法·散列表
写代码的小球2 小时前
C++计算器(学生版)
c++·算法
AI科技星3 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活