6.27数据分析实训任务1.1(python)

import pandas as pd

import matplotlib.pyplot as plt

读取 CSV 文件

data = pd.read_csv(r"C:\Users\XXGC\Desktop\shiuxun3.csv")

将订单创建时间转换为 datetime 类型

data["订单创建时间"] = pd.to_datetime(data["订单创建时间"])

提取小时信息

data["小时"] = data["订单创建时间"].dt.hour

计算每个小时的订单数量

hourly_orders = data.groupby("小时")["订单编号"].count()

绘制折线图

plt.figure(figsize=(12, 6))

plt.plot(hourly_orders.index, hourly_orders.values)

plt.xlabel("小时")

plt.ylabel("订单数量")

plt.title("订单数量随时间的变化(小时维度)")

plt.xticks(range(0, 24, 2))

plt.grid(True)

plt.show()

数据分析

1. 订单数量最多的小时

max_hour = hourly_orders.idxmax()

max_orders = hourly_orders.max()

print("订单数量最多的小时是:{} 点,订单数量为:{}".format(max_hour, max_orders))

2. 总订单数量

total_orders = data["订单编号"].count()

print("总订单数量为:{}".format(total_orders))

3. 平均订单金额

average_amount = data["总金额"].mean()

print("平均订单金额为:{:.2f}".format(average_amount))

4. 退款订单数量和退款金额

refund_orders = data[data["退款金额"] > 0]

refund_orders_count = refund_orders.shape[0]

refund_amount = refund_orders["退款金额"].sum()

print("退款订单数量为:{},退款金额为:{:.2f}".format(refund_orders_count, refund_amount))

相关推荐
deephub2 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
布说在见9 分钟前
魅力标签云,奇幻词云图 —— 数据可视化新境界
信息可视化·数据挖掘·数据分析
Open-AI19 分钟前
Python如何判断一个数是几位数
python
IT技术分享社区20 分钟前
C#实战:使用腾讯云识别服务轻松提取火车票信息
开发语言·c#·云计算·腾讯云·共识算法
极客代码23 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深25 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
疯一样的码农29 分钟前
Python 正则表达式(RegEx)
开发语言·python·正则表达式
&岁月不待人&1 小时前
Kotlin by lazy和lateinit的使用及区别
android·开发语言·kotlin
StayInLove1 小时前
G1垃圾回收器日志详解
java·开发语言
无尽的大道1 小时前
Java字符串深度解析:String的实现、常量池与性能优化
java·开发语言·性能优化