【趣谈】BP神经网络是如何演变出RNN神经网络的

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/

目录

有些朋友学习了BP神经网络,却认为RNN很遥远,或者有些朋友学了RNN,却不知它的意义,这两者差不多就是同一个东西,因此不妨来聊聊BP是如何演变出RNN的,以此加深对两者的了解。

一、BP神经网络是什么

一般最常用的是三层的BP神经网络,它只要隐节点足够多就足以拟合任意曲线。

如果从它的数学表达式来看,就更容易理解它的意义了:

是的,BP神经网络简单来说就只是用多个tansig函数来拟合目标函数。

如果要简洁地总结BP神经网络是什么,那就是"一个可以拟合任意函数的模型"

二、BP神经网络如何解决序列预测问题

序列数据的后一个数据与前面的数据相关,这是序列数据的特性。例如房价就是序列数据,每月的房价不仅受当前市场各种因素的影响,它还与上个月的房价紧密相关。

2.1. BP解决序列预测-Jordan神经网络

要用bp神经网络预测序列数据,最简易的思路就是把前一个数据的输出加入到当前数据中作为输入变量,因为当前的输出不仅受x的影响,还受之前的y的影响:

没错,就是这么简单,就诞生了最初代的循环神经网络-Jordan神经网络。

2.2.RNN神经网络

而Elman则提出,不要把上一时刻的y加到隐层,而是把上一时刻的隐层加到当前隐层

为啥要用上一时刻的隐层来替代y呢?因为y就是隐层计算得到的,可见隐层是"更原始"的变量,这样对信息的使用更为充分。没错,Elman的这一改动可以说是个壮举,太实用了,所以都不叫Elman神经网络了,直接称为"RNN神经网络"或"基础RNN神经网络"。

RNN一般按时序展开,就如下图所示:

它实际就是一个三层的BP神经网络,然后每层除了实时输入X,还接受来自上一层的隐层作为延迟输入。RNN就是如此简单,实际就是"用于解决序列预测的BP神经网络"。

BP神经网络是一个非常有趣的东西,不仅它自身在曲线拟合上取得的极佳效果,它还生了几个儿子:CNN,RNN,编码器,个个儿子都这么出色。


相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂

《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂

《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

相关推荐
sbc-study9 分钟前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz17 分钟前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子26 分钟前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor
要努力啊啊啊27 分钟前
Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一
人工智能·语言模型·自然语言处理·faiss
EasyDSS34 分钟前
国标GB28181设备管理软件EasyGBS远程视频监控方案助力高效安全运营
网络·人工智能
春末的南方城市43 分钟前
港科大&快手提出统一上下文视频编辑 UNIC,各种视频编辑任务一网打尽,还可进行多项任务组合!
人工智能·计算机视觉·stable diffusion·aigc·transformer
叶子2024221 小时前
学习使用YOLO的predict函数使用
人工智能·学习·yolo
dmy1 小时前
n8n内网快速部署
运维·人工智能·程序员
傻啦嘿哟1 小时前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能
火星数据-Tina1 小时前
AI数据分析在体育中的应用:技术与实践
人工智能·数据挖掘·数据分析