【数据分析】1、用Pandas计算数据相关性系数

相关性系数和相关分析是了解变量之间关系的重要工具。通过合理选择相关性系数和科学分析数据,能够有效揭示变量之间的关系,为进一步研究和决策提供有力支持。在实际应用中,应结合业务背景、数据特性和统计原则,谨慎解释和应用相关分析结果。

相关性系数

相关性系数(Correlation Coefficient)是度量两个变量之间相关程度的统计指标。常见的相关性系数有以下几种:

1. 皮尔逊相关系数(Pearson Correlation Coefficient)

  • 用于测量两个连续变量之间的线性相关程度。

  • 取值范围为[-1, 1]:

    • 1 表示完全正相关,两个变量呈线性正比例关系。
    • -1 表示完全负相关,两个变量呈线性反比例关系。
    • 0 表示没有线性相关关系。
  • 公式:

    其中,Xi 和 Yi​ 分别为两个变量的观测值, Xˉ 和Yˉ 为变量的均值。

2. 斯皮尔曼相关系数( Spearman's Rank Correlation Coefficient

  • 用于测量两个变量之间的单调相关程度,适用于非线性关系或数据不满足正态分布的情况。
  • 通过计算变量排名之间的皮尔逊相关系数得到。
  • 公式:

其中,di​ 是每对观测值排名之差,n 是观测值的数量。

3. 肯德尔相关系数( Kendall's Tau Coefficient ):

  • 另一种用于测量两个变量之间单调关系的方法,特别适用于小样本数据。
  • 基于观测值对之间的一致性和不一致性计算。
  • 公式:

其中,C和 D 分别表示一致性和不一致性对数,T1​ 和 T2​ 分别表示两个变量的平局对数。

在Pandas库中,DataFrame.corr()方法用于计算DataFrame各列之间的相关系数。默认情况下,DataFrame.corr()使用的是皮尔逊相关系数(Pearson Correlation Coefficient)。

示例代码

以下是一个简单的示例,展示如何使用df.corr()计算DataFrame各列之间的皮尔逊相关系数:

python 复制代码
import pandas as pd

# 创建示例数据
data = {
    'A': [1, 2, 3, 4, 5],
    'B': [2, 4, 6, 8, 10],
    'C': [5, 4, 3, 2, 1]
}

df = pd.DataFrame(data)

# 计算相关系数矩阵
correlation_matrix = df.corr()
print(correlation_matrix)

输出

上述代码输出的相关系数矩阵可能如下:

python 复制代码
          A         B         C
A  1.000000  1.000000 -1.000000
B  1.000000  1.000000 -1.000000
C -1.000000 -1.000000  1.000000

解释

  • A和B之间的相关系数为1,表示它们之间存在完全正相关关系。
  • A和C之间的相关系数为-1,表示它们之间存在完全负相关关系。
  • B和C之间的相关系数为-1,同样表示它们之间存在完全负相关关系。

其他相关系数方法

如果需要计算其他类型的相关系数,可以通过method参数指定,如:

  • method='pearson':计算皮尔逊相关系数(默认)。
  • method='kendall':计算肯德尔相关系数。
  • method='spearman':计算斯皮尔曼相关系数。
python 复制代码
# 计算斯皮尔曼相关系数矩阵
spearman_corr = df.corr(method='spearman')
print(spearman_corr)
相关推荐
2013092416273 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
如何原谅奋力过但无声3 小时前
【力扣-Python-滑动窗口经典题】567.字符串的排列 | 424.替换后的最长重复字符 | 76.最小覆盖子串
算法·leetcode
HyperAI超神经4 小时前
IQuest-Coder-V1:基于代码流训练的编程逻辑增强模型;Human Face Emotions:基于多标注维度的人脸情绪识别数据集
人工智能·深度学习·学习·机器学习·ai编程
玄冥剑尊4 小时前
贪心算法进阶
算法·贪心算法
玄冥剑尊4 小时前
贪心算法深化 I
算法·贪心算法
啊阿狸不会拉杆4 小时前
《机器学习》第 1 章 - 机器学习概述
人工智能·机器学习·ai·ml
52Hz1184 小时前
力扣73.矩阵置零、54.螺旋矩阵、48.旋转图像
python·算法·leetcode·矩阵
咚咚王者4 小时前
人工智能之核心基础 机器学习 第十八章 经典实战项目
人工智能·机器学习
DuHz4 小时前
矩阵束法(Matrix Pencil)用于 FMCW 雷达干扰抑制:论文精读
人工智能·机器学习·矩阵
编程小风筝4 小时前
机器学习和稀疏建模的应用场景和优势
人工智能·机器学习