AI 与 Python 实战干货:基于深度学习的图像识别

《AI 与 Python 实战干货:基于深度学习的图像识别》

今天咱不啰嗦,直接上干货!

在 AI 领域,特别是图像识别方面,Python 简直是一把利器。咱就以手写数字识别为例,来看看怎么用 Python 实现一个深度学习模型。

首先,准备工作得做好。我们需要导入一些关键的库,比如 tensorflownumpy 等。

python 复制代码
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.utils import to_categorical

接下来,加载数据并进行预处理。

python 复制代码
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

x_train /= 255
x_test /= 255

y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

然后,构建我们的模型。

python 复制代码
model = Sequential([
    Flatten(input_shape=(28, 28, 1)),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])

再对模型进行编译和训练。

python 复制代码
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test))

训练完成后,我们可以在测试集上评估模型的性能。

python 复制代码
loss, accuracy = model.evaluate(x_test, y_test)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

这就是一个基本的手写数字识别模型的实现过程。通过不断调整参数、增加层数、优化激活函数等,还能进一步提高模型的性能。

在 AI 开发中,还有很多技巧和注意事项。比如,数据增强可以增加数据的多样性,防止过拟合;使用回调函数可以在训练过程中进行动态调整,比如早停法可以避免过度训练。

我的 PlugLink 项目网址:https://github.com/zhengqia/PlugLink

相关推荐
weixin_446260851 分钟前
掌握 Claude Code Hooks:让 AI 变得更聪明!
人工智能
小白|3 分钟前
CANN性能调优实战:从Profiling到极致优化的完整方案
人工智能
哈__3 分钟前
CANN加速图神经网络GNN推理:消息传递与聚合优化
人工智能·深度学习·神经网络
渣渣苏4 分钟前
Langchain实战快速入门
人工智能·python·langchain
七月稻草人5 分钟前
CANN 生态下 ops-nn:AIGC 模型的神经网络计算基石
人工智能·神经网络·aigc·cann
User_芊芊君子6 分钟前
CANN_MetaDef图定义框架全解析为AI模型构建灵活高效的计算图表示
人工智能·深度学习·神经网络
I'mChloe6 分钟前
CANN GE 深度技术剖析:图优化管线、Stream 调度与离线模型生成机制
人工智能
凯子坚持 c8 分钟前
CANN 生态全景:`cann-toolkit` —— 一站式开发套件如何提升 AI 工程效率
人工智能
lili-felicity9 分钟前
CANN流水线并行推理与资源调度优化
开发语言·人工智能
皮卡丘不断更11 分钟前
告别“金鱼记忆”:SwiftBoot v0.1.5 如何给 AI 装上“永久项目大脑”?
人工智能·系统架构·ai编程