AI 与 Python 实战干货:基于深度学习的图像识别

《AI 与 Python 实战干货:基于深度学习的图像识别》

今天咱不啰嗦,直接上干货!

在 AI 领域,特别是图像识别方面,Python 简直是一把利器。咱就以手写数字识别为例,来看看怎么用 Python 实现一个深度学习模型。

首先,准备工作得做好。我们需要导入一些关键的库,比如 tensorflownumpy 等。

python 复制代码
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.utils import to_categorical

接下来,加载数据并进行预处理。

python 复制代码
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

x_train /= 255
x_test /= 255

y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

然后,构建我们的模型。

python 复制代码
model = Sequential([
    Flatten(input_shape=(28, 28, 1)),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])

再对模型进行编译和训练。

python 复制代码
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test))

训练完成后,我们可以在测试集上评估模型的性能。

python 复制代码
loss, accuracy = model.evaluate(x_test, y_test)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

这就是一个基本的手写数字识别模型的实现过程。通过不断调整参数、增加层数、优化激活函数等,还能进一步提高模型的性能。

在 AI 开发中,还有很多技巧和注意事项。比如,数据增强可以增加数据的多样性,防止过拟合;使用回调函数可以在训练过程中进行动态调整,比如早停法可以避免过度训练。

我的 PlugLink 项目网址:https://github.com/zhengqia/PlugLink

相关推荐
LCG元3 分钟前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能
我叫黑大帅5 分钟前
什么叫可迭代对象?为什么要用它?
前端·后端·python
Dillon Dong15 分钟前
Django + uWSGI 部署至 Ubuntu 完整指南
python·ubuntu·django
k***825138 分钟前
python爬虫——爬取全年天气数据并做可视化分析
开发语言·爬虫·python
new_dev1 小时前
Python网络爬虫从入门到实战
爬虫·python·媒体
想你依然心痛1 小时前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术
q***01651 小时前
Python爬虫完整代码拿走不谢
开发语言·爬虫·python
今天没有盐1 小时前
Python算法实战:从滑动窗口到数学可视化
python·pycharm·编程语言
Learn Beyond Limits1 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
lucky_dog1 小时前
python——课堂笔记😻
python