AI 与 Python 实战干货:基于深度学习的图像识别

《AI 与 Python 实战干货:基于深度学习的图像识别》

今天咱不啰嗦,直接上干货!

在 AI 领域,特别是图像识别方面,Python 简直是一把利器。咱就以手写数字识别为例,来看看怎么用 Python 实现一个深度学习模型。

首先,准备工作得做好。我们需要导入一些关键的库,比如 tensorflownumpy 等。

python 复制代码
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.utils import to_categorical

接下来,加载数据并进行预处理。

python 复制代码
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

x_train /= 255
x_test /= 255

y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

然后,构建我们的模型。

python 复制代码
model = Sequential([
    Flatten(input_shape=(28, 28, 1)),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])

再对模型进行编译和训练。

python 复制代码
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test))

训练完成后,我们可以在测试集上评估模型的性能。

python 复制代码
loss, accuracy = model.evaluate(x_test, y_test)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

这就是一个基本的手写数字识别模型的实现过程。通过不断调整参数、增加层数、优化激活函数等,还能进一步提高模型的性能。

在 AI 开发中,还有很多技巧和注意事项。比如,数据增强可以增加数据的多样性,防止过拟合;使用回调函数可以在训练过程中进行动态调整,比如早停法可以避免过度训练。

我的 PlugLink 项目网址:https://github.com/zhengqia/PlugLink

相关推荐
用户5191495848451 分钟前
Aniyomi扩展开发指南与Google Drive集成方案
人工智能·aigc
ezl1fe3 分钟前
第零篇:把 Agent 跑起来的最小闭环
人工智能·后端·agent
说私域7 分钟前
开源链动2+1模式AI智能名片S2B2C商城小程序在竞争激烈的中低端面膜服装行业中的应用与策略
大数据·人工智能·小程序
佛喜酱的AI实践8 分钟前
Claude Code配置魔法:从单人编程到专属AI团队协作
人工智能·claude
文心快码BaiduComate11 分钟前
文心快码Comate3.5S更新,用多智能体协同做个健康管理应用
前端·人工智能·后端
MonkeyKing_sunyuhua11 分钟前
python线程间怎么通信
android·网络·python
叶楊12 分钟前
PEFT适配器加载
人工智能·深度学习·机器学习
Tezign_space18 分钟前
AI用户洞察新纪元:atypica.AI如何重塑商业决策逻辑
人工智能·ai智能体·atypica
却道天凉_好个秋20 分钟前
OpenCV(十一):色彩空间转换
人工智能·opencv·计算机视觉
AI街潜水的八角23 分钟前
垃圾桶满溢检测和识别2:基于深度学习YOLOv12神经网络实现垃圾桶满溢检测和识别(含训练代码和数据集)
深度学习·神经网络·yolo