AI 与 Python 实战干货:基于深度学习的图像识别

《AI 与 Python 实战干货:基于深度学习的图像识别》

今天咱不啰嗦,直接上干货!

在 AI 领域,特别是图像识别方面,Python 简直是一把利器。咱就以手写数字识别为例,来看看怎么用 Python 实现一个深度学习模型。

首先,准备工作得做好。我们需要导入一些关键的库,比如 tensorflownumpy 等。

python 复制代码
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.utils import to_categorical

接下来,加载数据并进行预处理。

python 复制代码
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')

x_train /= 255
x_test /= 255

y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

然后,构建我们的模型。

python 复制代码
model = Sequential([
    Flatten(input_shape=(28, 28, 1)),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])

再对模型进行编译和训练。

python 复制代码
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test))

训练完成后,我们可以在测试集上评估模型的性能。

python 复制代码
loss, accuracy = model.evaluate(x_test, y_test)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

这就是一个基本的手写数字识别模型的实现过程。通过不断调整参数、增加层数、优化激活函数等,还能进一步提高模型的性能。

在 AI 开发中,还有很多技巧和注意事项。比如,数据增强可以增加数据的多样性,防止过拟合;使用回调函数可以在训练过程中进行动态调整,比如早停法可以避免过度训练。

我的 PlugLink 项目网址:https://github.com/zhengqia/PlugLink

相关推荐
丝斯201113 分钟前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习
小鸡吃米…33 分钟前
机器学习中的代价函数
人工智能·python·机器学习
chatexcel1 小时前
元空AI+Clawdbot:7×24 AI办公智能体新形态详解(长期上下文/自动化任务/工具粘合)
运维·人工智能·自动化
All The Way North-1 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
Li emily2 小时前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
bylander2 小时前
【AI学习】TM Forum《Autonomous Networks Implementation Guide》快速理解
人工智能·学习·智能体·自动驾驶网络
m0_561359672 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
Ulyanov2 小时前
顶层设计——单脉冲雷达仿真器的灵魂蓝图
python·算法·pyside·仿真系统·单脉冲
Techblog of HaoWANG2 小时前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
laplace01232 小时前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills