kafka(一)原理(2)组件

一、broker

1、介绍

kafka服务器的官方名字,一个集群由多个broker组成,一个broker可以容纳多个topic。

2、工作流程
3、重要参数

|-----------------------------------------|----------------------------------------------------------------------|
| 参数名称 | 描述 |
| replica.lag.time.max.ms | ISR中,如果Follower长时间未向Leader发送通信请求或同步数据,则该Follower将被踢出ISR。该时间阈值,默认30s。 |
| auto.leader.rebalance.enable | 默认是true。 自动Leader Partition 平衡。 |
| leader.imbalance.per.broker.percentage | 默认是10%。每个broker允许的不平衡的leader的比率。如果每个broker超过了这个值,控制器会触发leader的平衡。 |
| leader.imbalance.check.interval.seconds | 默认值300秒。检查leader负载是否平衡的间隔时间。 |
| log.segment.bytes | Kafka中log日志是分成一块块存储的,此配置是指log日志划分 成块的大小,默认值1G。 |
| log.index.interval.bytes | 默认4kb,kafka里面每当写入了4kb大小的日志(.log),然后就往index文件里面记录一个索引。 |
| log.retention.hours | Kafka中数据保存的时间,默认7天。 |
| log.retention.minutes | Kafka中数据保存的时间,分钟级别,默认关闭。 |
| log.retention.ms | Kafka中数据保存的时间,毫秒级别,默认关闭。 |
| log.retention.check.interval.ms | 检查数据是否保存超时的间隔,默认是5分钟。 |
| log.retention.bytes | 默认等于-1,表示无穷大。超过设置的所有日志总大小,删除最早的segment。 |
| log.cleanup.policy | 默认是delete,表示所有数据启用删除策略; 如果设置值为compact,表示所有数据启用压缩策略。 |
| num.io.threads | 默认是8。负责写磁盘的线程数。整个参数值要占总核数的50%。 |
| num.replica.fetchers | 副本拉取线程数,这个参数占总核数的50%的1/3 |
| num.network.threads | 默认是3。数据传输线程数,这个参数占总核数的50%的2/3 。 |
| log.flush.interval.messages | 强制页缓存刷写到磁盘的条数,默认是long的最大值,9223372036854775807。一般不建议修改,交给系统自己管理。 |
| log.flush.interval.ms | 每隔多久,刷数据到磁盘,默认是null。一般不建议修改,交给系统自己管理。 |

4、文件存储
3.1、文件存储机制
3.2、文件清洗策略

二、生产者

可以是flume、MySQL、java等,其实就是向kafka发送数据的。

1、发送原理

在消息发送的过程中,涉及到了两个线程------main线程和Sender线程。在main线程中创建了一个双端队列RecordAccumulator。main线程将消息发送给RecordAccumulator,Sender线程不断从RecordAccumulator中拉取消息发送到Kafka Broker。

从图中的流程可以看出,生产者和kafka集群之间还有一个RecordAccumulator队列默认大小是32M,topic分区的话,producer会对应有一个分区器,数据在进入中间队列前,已经被分区器进行了分区,sender()方法在发送数据时,就直接根据分区进行拉取了,拉取时有两个参数,也就是调优参数。

(1)batch.size :也就是批大小,只有数据累计到batch.size后,sender才会发送数据,默认16k (2)linger.ms :也就是等待时间,如果数据未达到batch.size,sender等待linger.ms设置的时间就会发送数据,单位ms,默认值就是0ms,就是有了一条数据直接发(默认为0是因为kafka要接实时数仓,所以设置为0)。

2、生产者重要参数列表

|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 参数名称 | 描述 |
| bootstrap.servers | 生产者连接集群所需的broker地址清单。例如hadoop102:9092,hadoop103:9092,hadoop104:9092,可以设置1个或者多个,中间用逗号隔开。注意这里并非需要所有的broker地址,因为生产者从给定的broker里查找到其他broker信息。 |
| key.serializer和value.serializer | 指定发送消息的key和value的序列化类型。一定要写全类名。 |
| buffer.memory | RecordAccumulator缓冲区总大小,默认32m。 |
| batch.size | 缓冲区一批数据最大值,默认16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。 |
| linger.ms | 如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。单位ms,默认值是0ms,表示没有延迟。生产环境建议该值大小为5-100ms之间。 |
| acks | 0:生产者发送过来的数据,不需要等数据落盘应答。 1:生产者发送过来的数据,Leader收到数据后应答。 -1(all):生产者发送过来的数据,Leader+和isr队列里面的所有节点收齐数据后应答。默认值是-1,-1和all是等价的。 |
| max.in.flight.requests.per.connection | 允许最多没有返回ack的次数,默认为5,开启幂等性要保证该值是 1-5的数字。 |
| retries | 当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是int最大值,2147483647。 如果设置了重试,还想保证消息的有序性,需要设置 MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。 |
| retry.backoff.ms | 两次重试之间的时间间隔,默认是100ms。 |
| enable.idempotence | 是否开启幂等性,默认true,开启幂等性。 compression.type 生产者发送的所有数据的压缩方式。默认是none,也就是不压缩。 支持压缩类型:none、gzip、snappy、lz4和zstd。 |

3、提高吞吐量

提高吞吐量,就是提高批次传输大小,还有就是效率问题

复制代码
 //调优参数,还是需要根据业务需求来调整
        //batch.size 批次大小,默认是16k,将批次大小增大,进而提高吞吐量
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG,32768);
        //linger.ms 等待时长,默认是0ms,增加等待时长
        properties.put(ProducerConfig.LINGER_MS_CONFIG, 5);
        //双端队列大小,默认是32M,可以提高到64M
        properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG,67108864);
        //调整压缩格式,默认没有压缩
        properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "snappy");
4、数据可靠性

数据可靠性基于ack应答机制。为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后都需要向producer发送ack(acknowledgement 确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。

数据完全可靠的条件:**Acks级别设置为-1,分区副本大于等于2,ISR应答的最小副本数大于等于2。**具体来看下:

4.1、副本数据同步策略

|-----------------|--------------------------------|--------------------------------|
| 方案 | 优点 | 缺点 |
| 半数以上完成同步,就发送ack | 延迟低 | 选举新的leader时,容忍n台节点故障,需要2n+1个副本 |
| 全部完成同步,才发送ack | 选举新的leader时,容忍n台节点故障,需要n+1 个副本 | 延迟高 |

Kafka选择了第二种方案,原因如下:

(1)同样为了容忍 n 台节点的故障,第一种方案需要 2n+1 个副本,而第二种方案只需要 n+1 个副本,而 Kafka 的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。

(2)虽然第二种方案的网络延迟会比较高,但网络延迟对 Kafka 的影响较小。

4.2、ISR

采用第二种方案之后,设想以下情景:leader 收到数据,所有 follower 都开始同步数据, 但有一个 follower,因为某种故障,迟迟不能与 leader 进行同步,那 leader 就要一直等下去, 直到它完成同步,才能发送 ack。这个问题怎么解决呢?

Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集 合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 follower 发送 ack。如果 follower 长时间 未 向 leader 同 步 数 据 , 则 该 follower 将 被 踢 出 ISR , 该 时 间 阈 值 由replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。

4.3、ack 应答机制

对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失, 所以没必要等 ISR 中的 follower 全部接收成功。所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡, 选择以下的配置。

(1) 0:producer 不等待 broker 的 ack,这一操作提供了一个最低的延迟,broker 一接收到还 没有写入磁盘就已经返回,当 broker 故障时有可能丢失数据;

(2)producer 等待 broker 的 ack,partition 的 leader 落盘成功后返回 ack,如果在 follower 同步成功之前 leader 故障,那么将会丢失数据;

(3) -1(all):producer 等待 broker 的 ack,partition 的 leader 和 follower 全部落盘成功后才 返回 ack。但是如果在 follower 同步完成后,broker 发送 ack 之前,leader 发生故障,那么会 造成数据重复。

4.4、故障处理细节

Log文件中的HW和LEO。

LEO:指的是每个副本最大的 offset;

HW:指的是消费者能见到的最大的 offset,ISR 队列中最小的 LEO。

(1)follower 故障

follower 发生故障后会被临时踢出 ISR,待该 follower 恢复后,follower 会读取本地磁盘 记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。 等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重 新加入 ISR 了

(2)leader 故障

leader 发生故障之后,会从 ISR 中选出一个新的 leader,之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader 同步数据。

注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

5、数据去重
**6、**数据有序

分区内有序,分区间无序

三、消费者组

由一个或者多个consumer组成,在kafka中,消费者都是有组的,即使是在consumer创建时没有没有设置组,但是kafka会默认一个有一个组,是组直接从kafka中的leader中拉取数据,消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

组内的所有消费者协调在一起来消费订阅主题的所有分区,但是同一个topic下的某个分区只能被消费者组中的一个消费者消费,不同消费者组中的消费者可以消费相同的分区。

在 Kafka 中,每个消费者都必须加入一个消费组(Consumer Group)才能进行消息的消费。消费组的作用在于协调多个消费者对消息的处理,以实现负载均衡和容错机制。

具体来说,spring.kafka.consumer.group-id 的作用包括以下几点:

消费者协调:Kafka 会根据 group-id 将不同的消费者分配到不同的消费组中,不同的消费组之间相互独立。消费组内的消费者协调工作由 Kafka 服务器自动完成,确保消息在消费组内得到均匀地分发。

负载均衡:当多个消费者加入同一个消费组时,Kafka 会自动对订阅的主题进行分区分配,以实现消费者之间的负载均衡。每个分区只会分配给消费组内的一个消费者进行处理,从而实现并行处理和提高整体的消息处理能力。

容错机制:在消费组内,如果某个消费者出现故障或者新的消费者加入,Kafka 会自动重新平衡分区的分配,确保各个分区的消息能够被有效地消费。

需要注意的是,同一个消费组内的消费者共享消费位移(offset),即每个分区的消息只会被消费组内的一个消费者处理。因此,同一个主题下的不同消费组是相互独立的,不会进行负载均衡和消费位移的共享。

四、消费者

(可能是MySQL、Hadoop、spark、flink、java),就是向kafka取数据的。

1、工作流程
2、重要参数

|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 参数名称 | 描述 |
| bootstrap.servers | 向Kafka集群建立初始连接用到的host/port列表。 |
| key.deserializer和value.deserializer | 指定接收消息的key和value的反序列化类型。一定要写全类名。 |
| group.id | 标记消费者所属的消费者组。 |
| enable.auto.commit | 默认值为true,消费者会自动周期性地向服务器提交偏移量。 |
| auto.commit.interval.ms | 如果设置了 enable.auto.commit 的值为true, 则该值定义了消费者偏移量向Kafka提交的频率,默认5s。 |
| auto.offset.reset | 当Kafka中没有初始偏移量或当前偏移量在服务器中不存在(如,数据被删除了),该如何处理? earliest:自动重置偏移量到最早的偏移量。 latest:默认,自动重置偏移量为最新的偏移量。 none:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常。 anything:向消费者抛异常。 |
| offsets.topic.num.partitions | __consumer_offsets的分区数,默认是50个分区。 |
| heartbeat.interval.ms | Kafka消费者和coordinator之间的心跳时间,默认3s。 该条目的值必须小于 session.timeout.ms ,也不应该高于 session.timeout.ms 的1/3。 |
| session.timeout.ms | Kafka消费者和coordinator之间连接超时时间,默认45s。超过该值,该消费者被移除,消费者组执行再平衡。 |
| max.poll.interval.ms | 消费者处理消息的最大时长,默认是5分钟。超过该值,该消费者被移除,消费者组执行再平衡。 |
| fetch.min.bytes | 默认1个字节。消费者获取服务器端一批消息最小的字节数。 |
| fetch.max.wait.ms | 默认500ms。如果没有从服务器端获取到一批数据的最小字节数。该时间到,仍然会返回数据。 |
| fetch.max.bytes | 默认Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受message.max.bytes (broker config)or max.message.bytes (topic config)影响。 |
| max.poll.records | 一次poll拉取数据返回消息的最大条数,默认是500条。 |

相关推荐
艾希逐月6 小时前
分布式唯一 ID 生成方案
分布式
齐木卡卡西在敲代码10 小时前
kafka的pull的依据
分布式·kafka
超级迅猛龙10 小时前
保姆级Debezium抽取SQL Server同步kafka
数据库·hadoop·mysql·sqlserver·kafka·linq·cdc
lllsure10 小时前
RabbitMQ 基础
分布式·rabbitmq
Wgllss10 小时前
Kotlin 享元设计模式详解 和对象池及在内存优化中的几种案例和应用场景
android·架构·android jetpack
DN金猿14 小时前
rabbitmq发送的延迟消息时间过长就立即消费了
分布式·rabbitmq
程序员不迷路14 小时前
微服务学习
微服务·架构
ejinxian14 小时前
MySQL/Kafka数据集成同步,增量同步及全量同步
数据库·mysql·kafka
Sadsvit14 小时前
源码编译安装LAMP架构并部署WordPress(CentOS 7)
linux·运维·服务器·架构·centos