基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1步态识别系统框架

[4.2 CNN原理及数学表述](#4.2 CNN原理及数学表述)

[4.3 CASIA步态数据库](#4.3 CASIA步态数据库)

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

1.训练过程

2.样本库

3.提取的步态能量图

4.步态识别结果和样本真实标签

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

(完整版代码包含详细中文注释,训练CASIA库)

复制代码
...............................................
digitDatasetPath = ['步态能量图\0\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles               = 2;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.8);
 
%定义卷积神经网络的基础结构
layers = [
    imageInputLayer([400 120 1]);%注意,400,150为能量图的大小,不能改
............................................................
    %全连接层
    fullyConnectedLayer(20);
    %softmax
    softmaxLayer;
    %输出分类结果
    classificationLayer;];

%设置训练参数
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.0001, ...
    'MaxEpochs', 1000, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', imdsValidation, ...
    'ValidationFrequency', 10, ...
    'Verbose', false, ...
    'Plots', 'training-progress');
 
%使用训练集训练网络
net         = trainNetwork(imdsTrain, layers, options);

save CNN.mat net
05_001m

4.算法理论概述

步态识别是一种生物特征识别技术,它通过个体走路的方式(如步长、步频、肢体摆动等)来辨认个人身份。基于卷积神经网络(Convolutional Neural Networks, CNN)的步态识别方法,利用深度学习的强大特征提取能力,可以从视频序列中自动学习步态的时空特征,进而实现高效的个体识别。

4.1步态识别系统框架

一个典型的基于CNN的步态识别系统包括以下几个关键步骤:

  1. 数据预处理:包括图像标准化、尺寸统一、背景消除等,以减少噪声和无关因素的干扰。
  2. 特征提取:利用CNN自动提取步态的时空特征。
  3. 模型构建:设计CNN架构,包括卷积层、池化层、全连接层及输出层等。
  4. 训练与优化:使用带标签的步态数据对模型进行训练,通过反向传播和优化算法(如Adam、SGD)调整权重。
  5. 识别测试:对新的步态样本进行预测,输出最可能的身份标签。

4.2 CNN原理及数学表述

CNN通过卷积层、池化层、激活函数等组件来学习特征。以一个简单的CNN层为例:

步态识别中的CNN模型通常包含多个卷积层和池化层,用于提取步态序列中的时空特征。每一帧步态图像经过卷积和池化后,特征逐渐抽象,最终通过全连接层映射到分类标签上。

4.3 CASIA步态数据库

CASIA步态数据库是中国科学院自动化研究所发布的权威步态数据集,包含大量个体在不同视角、不同衣着条件下的行走视频。利用此数据库进行训练和测试,要求模型具有良好的泛化能力和鲁棒性。

基于CNN的步态识别技术通过深度学习模型强大的特征学习能力,实现了对步态序列的有效分析和个体身份的准确识别。结合如CASIA这样的高质量步态数据库,该方法在实际应用中展现出优异的性能,特别是在监控、安全认证等领域有着广泛的应用前景。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
知行力1 小时前
百度PaddleOCR-VL:基于0.9B超紧凑视觉语言模型,支持109种语言,性能超越GPT-4o等大模型
人工智能·百度·1024程序员节
deephub1 小时前
vLLM 性能优化实战:批处理、量化与缓存配置方案
人工智能·python·大语言模型·1024程序员节·vllm
云飞云共享云桌面1 小时前
东莞精密机械制造工厂5个SolidWorks设计共享一套软件
运维·服务器·网络·人工智能·自动化·制造
Theodore_10221 小时前
机器学习(9)正则化
人工智能·深度学习·机器学习·计算机视觉·线性回归·1024程序员节
莫叫石榴姐1 小时前
半导体晶圆制造关于设备制程几个核心概念及映射关系
人工智能·机器学习·制造
Theodore_10221 小时前
机器学习(10)L1 与 L2 正则化详解
人工智能·深度学习·机器学习·梯度下降·1024程序员节
2501_927283581 小时前
WMS市场中的专业力量:为何天津荣联汇智是制造企业的重点关注对象
运维·人工智能·机器人·自动化·制造·agv
梵得儿SHI1 小时前
大型语言模型基础之 Prompt Engineering:打造稳定输出 JSON 格式的天气预报 Prompt
人工智能·语言模型·prompt·提示词工程·结构化输出·engineering·ai交互
赋创小助手1 小时前
“短小精悍”的边缘AI算力利器:超微SYS-E403-14B-FRN2T服务器评测
服务器·人工智能·科技·ai·架构·边缘计算·1024程序员节
叶庭云1 小时前
一文了解开源大语言模型文件结构,以 Hugging Face DeepSeek-V3.1 模型仓库为例
人工智能·大语言模型·hugging face·1024程序员节·llms·开源模型文件结构·deepseek-v3.1