Hive基础知识(二十三):数据倾斜优化

绝大部分任务 都很快完成,只有一个或者少数几个任务执行的很慢甚至最终执行失败, 这样的现象为数据倾斜现象。

一定要和数据过量导致的现象区分开,数据过量的表现为所有任务都执行的很慢,这个 时候只有提高执行资源才可以优化 HQL 的执行效率。

综合来看,导致数据倾斜的原因在于按照 Key 分组以后,少量的任务负责绝大部分数据 的计算 ,也就是说产生数据倾斜的 HQL 中一定存在分组操作,那么从 HQL 的角度,我们可 以将数据倾斜分为单表携带了 GroupBy 字段的查询和两表(或者多表)Join 的查询

1. 单表数据倾斜优化

1.1. 使用参数

当任务中存在 GroupBy 操作同时聚合函数为 count 或者 sum 可以设置参数来处理数据 倾斜问题。

复制代码
是否在 Map 端进行聚合,默认为 True
set hive.map.aggr = true;
在 Map 端进行聚合操作的条目数目
set hive.groupby.mapaggr.checkinterval = 100000;

有数据倾斜的时候进行负载均衡(默认是 false)

复制代码
set hive.groupby.skewindata = true;

当选项设定为 true,生成的查询计划会有两个 MR Job。

1.2. 增加 Reduce 数量(多个 Key 同时导致数据倾斜)

1)调整 reduce 个数方法一

(1)每个 Reduce 处理的数据量默认是 256MB

复制代码
set hive.exec.reducers.bytes.per.reducer = 256000000 

(2)每个任务最大的 reduce 数,默认为 1009

复制代码
set hive.exec.reducers.max = 1009 

(3)计算 reducer 数的公式

复制代码
N=min(参数 2,总输入数据量/参数 1)(参数 2 指的是上面的 1009,参数 1 值得是 256M)

2)调整 reduce 个数方法二

在 hadoop 的 mapred-default.xml 文件中修改

设置每个 job 的 Reduce 个数

复制代码
set mapreduce.job.reduces = 15;

2. Join 数据倾斜优化

2.1. 使用参数

在编写 Join 查询语句时,如果确定是由于 join 出现的数据倾斜,那么请做如下设置:

复制代码
# join 的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置
set hive.skewjoin.key=100000;
# 如果是 join 过程出现倾斜应该设置为 true
set hive.optimize.skewjoin=false;

如果开启了,在 Join 过程中 Hive 会将计数超过阈值 hive.skewjoin.key(默认 100000)的 倾斜 key 对应的行临时写进文件中,然后再启动另一个 job 做 map join 生成结果。通过 hive.skewjoin.mapjoin.map.tasks 参数还可以控制第二个 job 的 mapper 数量,默认 10000。

复制代码
set hive.skewjoin.mapjoin.map.tasks=10000;
相关推荐
大数据CLUB16 小时前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark
Edingbrugh.南空16 小时前
Hadoop高可用集群搭建
大数据·hadoop·分布式
无级程序员2 天前
hive2服务启动报错:/tmp/hive on HDFS should be writable(不是chmod 777能解决的)
hive·hadoop·hdfs
rui锐rui2 天前
大数据学习2:HIve
大数据·hive·学习
凌辰揽月2 天前
Servlet学习
hive·学习·servlet
weixin_307779132 天前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
王小王-1232 天前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
王小王-1233 天前
基于Hadoop的大规模文本词频统计分析系统设计与实现
hadoop·mapreduce·hadoop词频统计·hadoop文本统计·mapreduce词频统计
陈敬雷-充电了么-CEO兼CTO3 天前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
桂成林3 天前
Hive UDF 开发实战:MD5 哈希函数实现
hive·hadoop·哈希算法