SHAP中使用shap.summary_plot对多分类任务模型中特征重要性绘图

在文心一言中输入:

使用shap.summary_plot展示各个特征对模型输出类别的重要性

其输出的代码为(不正确):

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
import shap

# 加载数据集(这里使用iris数据集作为例子)
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化SVM模型并进行训练
clf = svm.SVC(kernel='linear', probability=True, random_state=42)
clf.fit(X_train, y_train)

# 初始化SHAP解释器
explainer = shap.Explainer(clf.predict_proba, X_train)

# 计算测试集上每个预测的SHAP值
# 注意:这里我们使用predict_proba方法,因为它返回了每个类别的概率
shap_values = explainer(X_test)

# 使用summary_plot可视化特征重要性
shap.summary_plot(shap_values, X_test, feature_names=iris.feature_names)

以上代码没有静态错误,但是运行报错:

Traceback (most recent call last):

File "D:\Ethan\Projects\fattyLiver\test_shap_iris.py", line 27, in <module>

shap.summary_plot(shap_values, X_test, feature_names=iris.feature_names)

File "D:\Ethan\Projects\fattyLiver\venv\lib\site-packages\shap\plots\_beeswarm.py", line 605, in summary_legacy

feature_names=feature_names[sort_inds],

TypeError: only integer scalar arrays can be converted to a scalar index

修改为如下代码(正确):

python 复制代码
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
import shap

# 加载数据集(这里使用iris数据集作为例子)
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化SVM模型并进行训练
clf = svm.SVC(kernel='linear', probability=True, random_state=42)
clf.fit(X_train, y_train)

# 初始化SHAP解释器
explainer = shap.Explainer(clf.predict_proba, X_train)

# 计算测试集上每个预测的SHAP值
# 注意:这里我们使用predict_proba方法,因为它返回了每个类别的概率
shap_values = explainer(X_test)

# 使用summary_plot可视化特征重要性
# shap.summary_plot(shap_values, X_test, feature_names=iris.feature_names)
list_of_2d_arrays = [shap_values.values[:, :, i] for i in range(3)]
shap.summary_plot(list_of_2d_arrays, X_test, feature_names=iris.feature_names, class_names=iris.target_names)

输出图片:

相关推荐
麻雀无能为力5 分钟前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心9 分钟前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield40 分钟前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域2 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技2 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_12 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎3 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎3 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊3 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪