SHAP中使用shap.summary_plot对多分类任务模型中特征重要性绘图

在文心一言中输入:

使用shap.summary_plot展示各个特征对模型输出类别的重要性

其输出的代码为(不正确):

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
import shap

# 加载数据集(这里使用iris数据集作为例子)
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化SVM模型并进行训练
clf = svm.SVC(kernel='linear', probability=True, random_state=42)
clf.fit(X_train, y_train)

# 初始化SHAP解释器
explainer = shap.Explainer(clf.predict_proba, X_train)

# 计算测试集上每个预测的SHAP值
# 注意:这里我们使用predict_proba方法,因为它返回了每个类别的概率
shap_values = explainer(X_test)

# 使用summary_plot可视化特征重要性
shap.summary_plot(shap_values, X_test, feature_names=iris.feature_names)

以上代码没有静态错误,但是运行报错:

Traceback (most recent call last):

File "D:\Ethan\Projects\fattyLiver\test_shap_iris.py", line 27, in <module>

shap.summary_plot(shap_values, X_test, feature_names=iris.feature_names)

File "D:\Ethan\Projects\fattyLiver\venv\lib\site-packages\shap\plots\_beeswarm.py", line 605, in summary_legacy

feature_names=feature_names[sort_inds],

TypeError: only integer scalar arrays can be converted to a scalar index

修改为如下代码(正确):

python 复制代码
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
import shap

# 加载数据集(这里使用iris数据集作为例子)
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化SVM模型并进行训练
clf = svm.SVC(kernel='linear', probability=True, random_state=42)
clf.fit(X_train, y_train)

# 初始化SHAP解释器
explainer = shap.Explainer(clf.predict_proba, X_train)

# 计算测试集上每个预测的SHAP值
# 注意:这里我们使用predict_proba方法,因为它返回了每个类别的概率
shap_values = explainer(X_test)

# 使用summary_plot可视化特征重要性
# shap.summary_plot(shap_values, X_test, feature_names=iris.feature_names)
list_of_2d_arrays = [shap_values.values[:, :, i] for i in range(3)]
shap.summary_plot(list_of_2d_arrays, X_test, feature_names=iris.feature_names, class_names=iris.target_names)

输出图片:

相关推荐
说私域1 分钟前
AI智能名片链动2+1模式小程序在消费者商家全链路互动中的应用研究
大数据·人工智能·小程序·流量运营·私域运营
千流出海3 分钟前
谷歌和苹果应用商店发现数十款AI去衣应用
人工智能
SelectDB技术团队8 分钟前
上市大模型企业数据基础设施的选择:MiniMax 基于阿里云 SelectDB 版,打造全球统一AI可观测中台
数据库·数据仓库·人工智能·ai·apache
橘子师兄9 分钟前
C++AI大模型接入SDK—Genimi接入封装
c++·人工智能·后端
向上的车轮10 分钟前
飞桨(PaddlePaddle):OCR识别原理
人工智能·ocr·paddlepaddle
njsgcs14 分钟前
langchain框架怎么让 Skills 与 MCP(tools)协同使用
人工智能·langchain·skills
newsxun14 分钟前
申晨案例解析:解码猫王如何从情怀走向现象级品牌的“熊猫罗盘”重塑之路
大数据·人工智能
拐爷17 分钟前
Vibe‑coding九阳神功之夯:Git 基础操作,AI 时代的刹车系统(附速查表)
人工智能·git
Ro Jace17 分钟前
Leveraging AI Algorithms for Electronic Warfare Data Processing
人工智能
总有刁民想爱朕ha17 分钟前
VisionForgeSDK:基于YOLOv8的新一代人工智能视觉检测解决方案
人工智能·yolo·视觉检测