SAR目标检测

Multi-Stage with Filter Augmentation 多阶段滤波器增强(MSFA)

对SAR合成孔径雷达目标检测性能的改善

MSFA ON SAR

传统方法:

预训练:传统方法开始于在通用数据集上预训练一个基础模型。 微调:这个预训练的模型会被微调以适应特定的SAR图像,试图缩小域间的差距

MSFA方法: 第一阶段:对数据集进行预训练,通过滤波器增强技术增强模型对SAR图像的处理能力。 第二阶段:模型在专门的SAR数据集上进行训练。然后再微调。

利用大规模光学遥感数据集DRS作为域传输的检测预训练。该数据集由光学模态影像组成,这 些影像在下游 SAR 数据集中也具有相似的对象形状、比例和类别。这一特性是Imagenet中自然图像的光学分布与SAR遥感图像中的目标分布之间的宝贵桥梁。通过利用这种第二阶段预训练, 可以有效地最小化域间隙

采用MSFA(多阶段滤波器增强)和INP(传统的ImageNet 这个模型在处理不同类型的目标时显示出了较好的性能,特

预训练)策略后的mAP(平均精度均值) MSFA策略在几乎所有模型上都表现出更好的性能,这表 明多阶段滤波器增强方法有助于提高模型在处理SAR图像 时的准确度

super Yolo

多模态遥感图像中的超分辅助。

抽取high和low feature。

相关推荐
xa138508696 分钟前
ARCGIS PRO SDK 多边形四至点计算
算法·arcgis
AuroraWanderll36 分钟前
类和对象(四):默认成员函数详解与运算符重载(下)
c语言·数据结构·c++·算法·stl
2401_8414956437 分钟前
【LeetCode刷题】杨辉三角
数据结构·python·算法·leetcode·杨辉三角·时间复杂度·空间复杂度
Tim_1038 分钟前
【算法专题训练】35、前缀树查找
算法
LYFlied1 小时前
【每日算法】LeetCode 62. 不同路径(多维动态规划)
前端·数据结构·算法·leetcode·动态规划
车企求职辅导1 小时前
新能源汽车零部件全品类汇总
人工智能·算法·车载系统·自动驾驶·汽车·智能驾驶·智能座舱
HUST1 小时前
C 语言 第九讲:函数递归
c语言·开发语言·数据结构·算法·c#
yaoh.wang1 小时前
力扣(LeetCode) 119: 杨辉三角 II - 解法思路
数据结构·python·算法·leetcode·面试·职场和发展·跳槽
CoderCodingNo1 小时前
【GESP】C++五级真题(埃氏筛思想考点) luogu-B3929 [GESP202312 五级] 小杨的幸运数
数据结构·c++·算法
arron88991 小时前
自训练yolo模型自主学习性能持续提升思路
学习·yolo·目标跟踪