SAR目标检测

Multi-Stage with Filter Augmentation 多阶段滤波器增强(MSFA)

对SAR合成孔径雷达目标检测性能的改善

MSFA ON SAR

传统方法:

预训练:传统方法开始于在通用数据集上预训练一个基础模型。 微调:这个预训练的模型会被微调以适应特定的SAR图像,试图缩小域间的差距

MSFA方法: 第一阶段:对数据集进行预训练,通过滤波器增强技术增强模型对SAR图像的处理能力。 第二阶段:模型在专门的SAR数据集上进行训练。然后再微调。

利用大规模光学遥感数据集DRS作为域传输的检测预训练。该数据集由光学模态影像组成,这 些影像在下游 SAR 数据集中也具有相似的对象形状、比例和类别。这一特性是Imagenet中自然图像的光学分布与SAR遥感图像中的目标分布之间的宝贵桥梁。通过利用这种第二阶段预训练, 可以有效地最小化域间隙

采用MSFA(多阶段滤波器增强)和INP(传统的ImageNet 这个模型在处理不同类型的目标时显示出了较好的性能,特

预训练)策略后的mAP(平均精度均值) MSFA策略在几乎所有模型上都表现出更好的性能,这表 明多阶段滤波器增强方法有助于提高模型在处理SAR图像 时的准确度

super Yolo

多模态遥感图像中的超分辅助。

抽取high和low feature。

相关推荐
Victory_orsh44 分钟前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
CoovallyAIHub1 小时前
突破360°跟踪极限!OmniTrack++:全景MOT新范式,HOTA指标狂飙43%
深度学习·算法·计算机视觉
AI浩1 小时前
MHAF-YOLO:用于精确目标检测的多分支异构辅助融合YOLO
人工智能·yolo·目标检测
得物技术1 小时前
得物管理类目配置线上化:从业务痛点到技术实现
后端·算法·数据分析
CoovallyAIHub2 小时前
首个大规模、跨模态医学影像编辑数据集,Med-Banana-50K数据集专为医学AI打造(附数据集地址)
深度学习·算法·计算机视觉
熬了夜的程序员2 小时前
【LeetCode】101. 对称二叉树
算法·leetcode·链表·职场和发展·矩阵
却道天凉_好个秋2 小时前
目标检测算法与原理(二):Tensorflow实现迁移学习
算法·目标检测·tensorflow
柳鲲鹏3 小时前
RGB转换为NV12,查表式算法
linux·c语言·算法
橘颂TA3 小时前
【剑斩OFFER】算法的暴力美学——串联所有单词的字串
数据结构·算法·c/c++