SAR目标检测

Multi-Stage with Filter Augmentation 多阶段滤波器增强(MSFA)

对SAR合成孔径雷达目标检测性能的改善

MSFA ON SAR

传统方法:

预训练:传统方法开始于在通用数据集上预训练一个基础模型。 微调:这个预训练的模型会被微调以适应特定的SAR图像,试图缩小域间的差距

MSFA方法: 第一阶段:对数据集进行预训练,通过滤波器增强技术增强模型对SAR图像的处理能力。 第二阶段:模型在专门的SAR数据集上进行训练。然后再微调。

利用大规模光学遥感数据集DRS作为域传输的检测预训练。该数据集由光学模态影像组成,这 些影像在下游 SAR 数据集中也具有相似的对象形状、比例和类别。这一特性是Imagenet中自然图像的光学分布与SAR遥感图像中的目标分布之间的宝贵桥梁。通过利用这种第二阶段预训练, 可以有效地最小化域间隙

采用MSFA(多阶段滤波器增强)和INP(传统的ImageNet 这个模型在处理不同类型的目标时显示出了较好的性能,特

预训练)策略后的mAP(平均精度均值) MSFA策略在几乎所有模型上都表现出更好的性能,这表 明多阶段滤波器增强方法有助于提高模型在处理SAR图像 时的准确度

super Yolo

多模态遥感图像中的超分辅助。

抽取high和low feature。

相关推荐
阿正的梦工坊17 分钟前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
小武~26 分钟前
Leetcode 每日一题C 语言版 -- 45 jump game ii
c语言·算法·leetcode
懷淰メ1 小时前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的水体污染检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·检测系统·deepseek·水体污染
行云流水6261 小时前
前端树形结构实现勾选,半勾选,取消勾选。
前端·算法
laocooon5238578862 小时前
一个C项目实现框架
c语言·算法
AI即插即用2 小时前
即插即用系列 | CVPR SwiftFormer:移动端推理新王者!0.8ms 延迟下 ImageNet 78.5% 准确率,吊打 MobileViT
图像处理·人工智能·深度学习·目标检测·计算机视觉·cnn·视觉检测
c#上位机3 小时前
halcon图像增强——图像取反
图像处理·算法·c#·halcon
zheyutao3 小时前
割点和桥
算法·图论
@小码农3 小时前
2025年北京海淀区中小学生信息学竞赛第二赛段C++真题
开发语言·数据结构·c++·算法
Coding茶水间3 小时前
基于深度学习的苹果病害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉