SAR目标检测

Multi-Stage with Filter Augmentation 多阶段滤波器增强(MSFA)

对SAR合成孔径雷达目标检测性能的改善

MSFA ON SAR

传统方法:

预训练:传统方法开始于在通用数据集上预训练一个基础模型。 微调:这个预训练的模型会被微调以适应特定的SAR图像,试图缩小域间的差距

MSFA方法: 第一阶段:对数据集进行预训练,通过滤波器增强技术增强模型对SAR图像的处理能力。 第二阶段:模型在专门的SAR数据集上进行训练。然后再微调。

利用大规模光学遥感数据集DRS作为域传输的检测预训练。该数据集由光学模态影像组成,这 些影像在下游 SAR 数据集中也具有相似的对象形状、比例和类别。这一特性是Imagenet中自然图像的光学分布与SAR遥感图像中的目标分布之间的宝贵桥梁。通过利用这种第二阶段预训练, 可以有效地最小化域间隙

采用MSFA(多阶段滤波器增强)和INP(传统的ImageNet 这个模型在处理不同类型的目标时显示出了较好的性能,特

预训练)策略后的mAP(平均精度均值) MSFA策略在几乎所有模型上都表现出更好的性能,这表 明多阶段滤波器增强方法有助于提高模型在处理SAR图像 时的准确度

super Yolo

多模态遥感图像中的超分辅助。

抽取high和low feature。

相关推荐
chenziang12 分钟前
leetcode hot100 删除链表的第n个节点
算法·leetcode·链表
thesky12345619 分钟前
活着就好20241225
学习·算法
Xenia22327 分钟前
复习篇~第二章程序设计基础
c++·算法
想睡觉 . 我也想睡觉 .35 分钟前
【C++算法】1.【模板】前缀和
开发语言·c++·算法
mit6.82437 分钟前
[数据结构] LRU Cache | List&Map 实现
算法
Schwertlilien1 小时前
图像处理-Ch1-数字图像基础
图像处理·人工智能·算法
程序员一诺1 小时前
【深度学习】嘿马深度学习笔记第10篇:卷积神经网络,学习目标【附代码文档】
人工智能·python·深度学习·算法
刚学HTML3 小时前
leetcode 05 回文字符串
算法·leetcode
AC使者3 小时前
#B1630. 数字走向4
算法
冠位观测者3 小时前
【Leetcode 每日一题】2545. 根据第 K 场考试的分数排序
数据结构·算法·leetcode