5种算法简单介绍:贪心算法、分治法、回溯法、动态规划法、最大流算法

  1. 贪心算法(Greedy Algorithm)

定义:

贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法并不是对所有问题都能得到整体最优解,关键是贪心策略的选择。

特点:

局部最优选择:每一步都选择当前状态下的最优解。

不回溯:一旦做出选择,就不再更改。

应用场景:

找零钱问题(每次取面值最大的硬币)。

霍夫曼编码(构建最优前缀编码)。

  1. 分治法(Divide and Conquer)

定义:

分治法是一种将问题分解为若干个子问题,递归地解决这些子问题,然后将子问题的解合并起来得到原问题的解的算法。

步骤:

分:将问题分解为若干个子问题。

治:递归地解决这些子问题。

合:将子问题的解合并起来得到原问题的解。

应用场景:

归并排序(将数组分为两半,分别排序后合并)。

快速排序(选择一个基准元素,将数组分为两部分,递归排序)。

  1. 回溯法(Backtracking)

定义:

回溯法是一种通过探索所有可能的候选解来找出所有解的算法。如果候选解被确认不是一个解(或者至少不是最后一个解),回溯法会通过在上一步进行一些更改来丢弃该解,即"回溯"并尝试其他可能的解。

基本思想:

试探:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

回溯:当试探到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择。

应用场景:

八皇后问题(在8x8的棋盘上放置八个皇后,使得它们不能互相攻击)。

图的着色问题(给定一个无向图,用k种颜色给图中的顶点着色,使得任意两个相邻的顶点颜色不同)。

  1. 动态规划法(Dynamic Programming)

定义:

动态规划通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解,每个解都对应一个值,动态规划的目标是找到具有最优值的解。

特点:

分解子问题:将原问题分解为若干个子问题。

保存子问题解:保存已解决的子问题的解,避免重复计算。

最优子结构:原问题的最优解所包含的子问题的解也是最优的。

应用场景:

背包问题(给定一组物品,每种物品都有自己的重量和价值,在限定的总重量内,如何选择使得物品的总价值最高)。

最短路径问题(在图中找到从一个顶点到另一个顶点的最短路径)。

  1. 最大流算法(Maximum Flow Algorithm)

定义:

最大流算法是在流网络中找到从源点到汇点的最大流量。流网络是一个有向图,图中的边有容量限制。

关键概念:

残留网络:表示当前网络中每条边还可以传输多少流量的网络。

增广路径:在残留网络中,从源点到汇点的一条路径,其路径上的最小残留容量即为该增广路径的容量。

算法步骤:

初始化流网络。

在残留网络中寻找增广路径。

如果找到增广路径,则更新网络中的流量。

重复步骤2和3,直到残留网络中不存在增广路径为止。

应用场景:

网络流优化问题(如带宽分配、运输调度等)。

某些特定的最优化问题,可以通过转换为网络流模型来解决。

相关推荐
Coovally AI模型快速验证2 小时前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
电院工程师3 小时前
SIMON64/128算法Verilog流水线实现(附Python实现)
python·嵌入式硬件·算法·密码学
轮到我狗叫了3 小时前
力扣.84柱状图中最大矩形 力扣.134加油站牛客.abb(hard 动态规划+哈希表)牛客.哈夫曼编码
算法·leetcode·职场和发展
丛雨要玩游戏3 小时前
字符函数和字符串函数
c语言·开发语言·算法
八个程序员3 小时前
自定义函数(C++)
开发语言·c++·算法
ad钙奶长高高3 小时前
【C语言】初始C语言
c语言·开发语言·算法
罗西的思考3 小时前
【Agent】 ACE(Agentic Context Engineering)源码阅读笔记---(3)关键创新
人工智能·算法
报错小能手4 小时前
C++笔记(面向对象)静态联编和动态联编
开发语言·c++·算法
WBluuue4 小时前
AtCoder Beginner Contest 430(ABCDEF)
c++·算法
小肖爱笑不爱笑4 小时前
2025/11/5 IO流(字节流、字符流、字节缓冲流、字符缓冲流) 计算机存储规则(ASCII、GBK、Unicode)
java·开发语言·算法