5种算法简单介绍:贪心算法、分治法、回溯法、动态规划法、最大流算法

  1. 贪心算法(Greedy Algorithm)

定义:

贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法并不是对所有问题都能得到整体最优解,关键是贪心策略的选择。

特点:

局部最优选择:每一步都选择当前状态下的最优解。

不回溯:一旦做出选择,就不再更改。

应用场景:

找零钱问题(每次取面值最大的硬币)。

霍夫曼编码(构建最优前缀编码)。

  1. 分治法(Divide and Conquer)

定义:

分治法是一种将问题分解为若干个子问题,递归地解决这些子问题,然后将子问题的解合并起来得到原问题的解的算法。

步骤:

分:将问题分解为若干个子问题。

治:递归地解决这些子问题。

合:将子问题的解合并起来得到原问题的解。

应用场景:

归并排序(将数组分为两半,分别排序后合并)。

快速排序(选择一个基准元素,将数组分为两部分,递归排序)。

  1. 回溯法(Backtracking)

定义:

回溯法是一种通过探索所有可能的候选解来找出所有解的算法。如果候选解被确认不是一个解(或者至少不是最后一个解),回溯法会通过在上一步进行一些更改来丢弃该解,即"回溯"并尝试其他可能的解。

基本思想:

试探:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

回溯:当试探到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择。

应用场景:

八皇后问题(在8x8的棋盘上放置八个皇后,使得它们不能互相攻击)。

图的着色问题(给定一个无向图,用k种颜色给图中的顶点着色,使得任意两个相邻的顶点颜色不同)。

  1. 动态规划法(Dynamic Programming)

定义:

动态规划通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解,每个解都对应一个值,动态规划的目标是找到具有最优值的解。

特点:

分解子问题:将原问题分解为若干个子问题。

保存子问题解:保存已解决的子问题的解,避免重复计算。

最优子结构:原问题的最优解所包含的子问题的解也是最优的。

应用场景:

背包问题(给定一组物品,每种物品都有自己的重量和价值,在限定的总重量内,如何选择使得物品的总价值最高)。

最短路径问题(在图中找到从一个顶点到另一个顶点的最短路径)。

  1. 最大流算法(Maximum Flow Algorithm)

定义:

最大流算法是在流网络中找到从源点到汇点的最大流量。流网络是一个有向图,图中的边有容量限制。

关键概念:

残留网络:表示当前网络中每条边还可以传输多少流量的网络。

增广路径:在残留网络中,从源点到汇点的一条路径,其路径上的最小残留容量即为该增广路径的容量。

算法步骤:

初始化流网络。

在残留网络中寻找增广路径。

如果找到增广路径,则更新网络中的流量。

重复步骤2和3,直到残留网络中不存在增广路径为止。

应用场景:

网络流优化问题(如带宽分配、运输调度等)。

某些特定的最优化问题,可以通过转换为网络流模型来解决。

相关推荐
君义_noip22 分钟前
信息学奥赛一本通 1524:旅游航道
c++·算法·图论·信息学奥赛
烁34731 分钟前
每日一题(小白)动态规划篇5
算法·动态规划
独好紫罗兰32 分钟前
洛谷题单2-P5717 【深基3.习8】三角形分类-python-流程图重构
开发语言·python·算法
滴答滴答嗒嗒滴38 分钟前
Python小练习系列 Vol.8:组合总和(回溯 + 剪枝 + 去重)
python·算法·剪枝
lidashent1 小时前
数据结构和算法——汉诺塔问题
数据结构·算法
小王努力学编程1 小时前
动态规划学习——背包问题
开发语言·c++·学习·算法·动态规划
f狐0狸x3 小时前
【蓝桥杯每日一题】4.1
c语言·c++·算法·蓝桥杯
ん贤3 小时前
2023第十四届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组(真题&题解)(C++/Java题解)
java·c语言·数据结构·c++·算法·蓝桥杯
梭七y3 小时前
【力扣hot100题】(022)反转链表
算法·leetcode·链表
威视锐科技6 小时前
软件定义无线电36
网络·网络协议·算法·fpga开发·架构·信息与通信