Elasticsearch 聚合基础:terms、avg、sum 等

Elasticsearch 的聚合功能是其强大搜索和分析能力的重要组成部分,它允许用户对存储在索引中的数据执行复杂的分析操作,如计算平均值、求和、分组等。在本文中,我们将深入探讨 Elasticsearch 的聚合基础,特别是 terms、avg 和 sum 聚合的使用。

一、Terms 聚合

Terms 聚合是 Elasticsearch 中最常用的聚合类型之一,它按照某个字段的值进行分组。例如,假设我们有一个酒店数据的索引,并希望按照品牌进行分组,以查看每个品牌的酒店数量。这时,我们可以使用 terms 聚合。

示例查询如下:

json 复制代码
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brand_terms": {
      "terms": {
        "field": "brand",
        "size": 10
      }
    }
  }
}

在这个查询中,我们指定了 size 为 0,表示不返回具体的文档结果,只返回聚合结果。aggs 字段下定义了聚合的名称和类型,brand_terms 是我们给这个聚合起的名字,terms 表示我们要使用 terms 聚合。在 terms 聚合内部,我们指定了要按照 brand 字段进行分组,并且只返回前 10 个品牌。

二、Avg 聚合

Avg 聚合用于计算某个字段的平均值。例如,如果我们想知道每个品牌的酒店平均评分,我们可以在 terms 聚合内部嵌套一个 avg 聚合。

示例查询如下:

json 复制代码
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brand_terms": {
      "terms": {
        "field": "brand",
        "size": 10
      },
      "aggs": {
        "avg_score": {
          "avg": {
            "field": "score"
          }
        }
      }
    }
  }
}

在这个查询中,我们在 terms 聚合内部又定义了一个名为 avg_score 的 avg 聚合,用于计算每个品牌的酒店平均评分。

三、Sum 聚合

Sum 聚合用于计算某个字段的总和。与 avg 聚合类似,sum 聚合也可以嵌套在 terms 聚合内部使用。

示例查询如下:

json 复制代码
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brand_terms": {
      "terms": {
        "field": "brand",
        "size": 10
      },
      "aggs": {
        "total_rooms": {
          "sum": {
            "field": "rooms"
          }
        }
      }
    }
  }
}

在这个查询中,我们定义了一个名为 total_rooms 的 sum 聚合,用于计算每个品牌的酒店房间总数。

四、其他聚合

除了 terms、avg 和 sum 聚合之外,Elasticsearch 还提供了许多其他类型的聚合,如 min、max、stats(同时计算 min、max、avg、sum 等)等。这些聚合可以单独使用,也可以嵌套在其他聚合内部使用,以满足复杂的分析需求。

五、总结

Elasticsearch 的聚合功能为用户提供了强大的数据分析能力,可以轻松地按照不同的维度对数据进行分组和计算。通过合理使用 terms、avg、sum 等聚合类型,用户可以快速地获取到所需的分析结果,为业务决策提供有力的支持。

相关推荐
真实的菜32 分钟前
Jenkins 插件深度应用:让你的CI/CD流水线如虎添翼 [特殊字符]
servlet·ci/cd·jenkins
时序数据说1 小时前
为什么时序数据库IoTDB选择Java作为开发语言
java·大数据·开发语言·数据库·物联网·时序数据库·iotdb
Codebee2 小时前
OneCode图表配置速查手册
大数据·前端·数据可视化
HGW6892 小时前
基于 Elasticsearch 实现地图点聚合
java·elasticsearch·高德地图
Jamie201901063 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
陈敬雷-充电了么-CEO兼CTO3 小时前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
ldj20203 小时前
Jenkins 构建过程常见错误
运维·jenkins
小高不会迪斯科4 小时前
MIT 6.824学习心得(1) 浅谈分布式系统概论与MapReduce
大数据·mapreduce
TDengine (老段)4 小时前
使用 StatsD 向 TDengine 写入
java·大数据·数据库·时序数据库·iot·tdengine·涛思数据
Gauss松鼠会4 小时前
GaussDB权限管理:从RBAC到精细化控制的企业级安全实践
大数据·数据库·安全·database·gaussdb