NOI大纲——普及组——二叉搜索树

二叉搜索树

二叉搜索树(Binary Search Tree,简称BST)是一种特殊的二叉树,它具有以下几个特点:

  1. 节点的左子树上的所有节点的值都小于或等于该节点的值
  2. 节点的右子树上的所有节点的值都大于或等于该节点的值
  3. 每个节点的左右子树也都是二叉搜索树

这些特点使得二叉搜索树在进行搜索、插入和删除操作时非常高效。具体来说,在平均情况下,这些操作的时间复杂度都是 (O(\log n)),其中 (n) 是树中的节点数。

二叉搜索树的基本操作

  1. 搜索(Search)

    • 从根节点开始,比较目标值与当前节点的值:

      • 如果目标值等于当前节点的值,则搜索成功;

      • 如果目标值小于当前节点的值,则在左子树中继续搜索;

      • 如果目标值大于当前节点的值,则在右子树中继续搜索。

  2. 插入(Insert)

    • 从根节点开始,找到目标值应该插入的位置,保持二叉搜索树的性质。
    • 如果目标值小于当前节点的值,则插入到左子树中;
    • 如果目标值大于当前节点的值,则插入到右子树中。
  3. 删除(Delete)

    • 删除操作稍微复杂一些,分为三种情况:
      1. 要删除的节点是叶子节点(没有子节点),直接删除即可。
      2. 要删除的节点有一个子节点,用该子节点替代要删除的节点。
      3. 要删除的节点有两个子节点,需要找到该节点的中序后继(右子树中最小的节点)或中序前驱(左子树中最大的节点),用这个节点的值替换要删除的节点的值,然后删除这个节点。

示例

假设我们有以下一组数据:[5, 3, 8, 2, 4, 7, 9],构建的二叉搜索树如下:

复制代码
      5
     / \
    3   8
   / \ / \
  2  4 7  9
  • 搜索 4:从根节点 5 开始,4 < 5,往左走;到达 3 节点,4 > 3,往右走;到达 4 节点,找到目标值。
  • 插入 6:从根节点 5 开始,6 > 5,往右走;到达 8 节点,6 < 8,往左走;到达 7 节点,6 < 7,往左走,插入 6 节点。
  • 删除 3:节点 3 有两个子节点,找到 4(中序后继)替换 3,然后删除节点 4

二叉搜索树因其高效的操作性能,在许多应用中被广泛使用,如数据库索引和内存中的数据结构。

相关推荐
卡卡卡卡罗特几秒前
每日mysql
数据结构·算法
chao_78936 分钟前
二分查找篇——搜索旋转排序数组【LeetCode】一次二分查找
数据结构·python·算法·leetcode·二分查找
蜉蝣之翼❉1 小时前
CRT 不同会导致 fopen 地址不同
c++·mfc
Boilermaker19921 小时前
【Java EE】Mybatis-Plus
java·开发语言·java-ee
aramae1 小时前
C++ -- STL -- vector
开发语言·c++·笔记·后端·visual studio
Tony小周1 小时前
实现一个点击输入框可以弹出的数字软键盘控件 qt 5.12
开发语言·数据库·qt
lifallen1 小时前
Paimon 原子提交实现
java·大数据·数据结构·数据库·后端·算法
lixzest1 小时前
C++ Lambda 表达式详解
服务器·开发语言·c++·算法
EndingCoder1 小时前
搜索算法在前端的实践
前端·算法·性能优化·状态模式·搜索算法
丶小鱼丶1 小时前
链表算法之【合并两个有序链表】
java·算法·链表