NOI大纲——普及组——二叉搜索树

二叉搜索树

二叉搜索树(Binary Search Tree,简称BST)是一种特殊的二叉树,它具有以下几个特点:

  1. 节点的左子树上的所有节点的值都小于或等于该节点的值
  2. 节点的右子树上的所有节点的值都大于或等于该节点的值
  3. 每个节点的左右子树也都是二叉搜索树

这些特点使得二叉搜索树在进行搜索、插入和删除操作时非常高效。具体来说,在平均情况下,这些操作的时间复杂度都是 (O(\log n)),其中 (n) 是树中的节点数。

二叉搜索树的基本操作

  1. 搜索(Search)

    • 从根节点开始,比较目标值与当前节点的值:

      • 如果目标值等于当前节点的值,则搜索成功;

      • 如果目标值小于当前节点的值,则在左子树中继续搜索;

      • 如果目标值大于当前节点的值,则在右子树中继续搜索。

  2. 插入(Insert)

    • 从根节点开始,找到目标值应该插入的位置,保持二叉搜索树的性质。
    • 如果目标值小于当前节点的值,则插入到左子树中;
    • 如果目标值大于当前节点的值,则插入到右子树中。
  3. 删除(Delete)

    • 删除操作稍微复杂一些,分为三种情况:
      1. 要删除的节点是叶子节点(没有子节点),直接删除即可。
      2. 要删除的节点有一个子节点,用该子节点替代要删除的节点。
      3. 要删除的节点有两个子节点,需要找到该节点的中序后继(右子树中最小的节点)或中序前驱(左子树中最大的节点),用这个节点的值替换要删除的节点的值,然后删除这个节点。

示例

假设我们有以下一组数据:[5, 3, 8, 2, 4, 7, 9],构建的二叉搜索树如下:

复制代码
      5
     / \
    3   8
   / \ / \
  2  4 7  9
  • 搜索 4:从根节点 5 开始,4 < 5,往左走;到达 3 节点,4 > 3,往右走;到达 4 节点,找到目标值。
  • 插入 6:从根节点 5 开始,6 > 5,往右走;到达 8 节点,6 < 8,往左走;到达 7 节点,6 < 7,往左走,插入 6 节点。
  • 删除 3:节点 3 有两个子节点,找到 4(中序后继)替换 3,然后删除节点 4

二叉搜索树因其高效的操作性能,在许多应用中被广泛使用,如数据库索引和内存中的数据结构。

相关推荐
saltymilk18 小时前
C++ 模板参数推导问题小记(模板类的模板构造函数)
c++·模板元编程
感哥18 小时前
C++ lambda 匿名函数
c++
沐怡旸1 天前
【底层机制】std::unique_ptr 解决的痛点?是什么?如何实现?怎么正确使用?
c++·面试
感哥1 天前
C++ 内存管理
c++
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
感哥1 天前
C++ 指针和引用
c++