昇思25天学习打卡营第10天|Vision Transformer图像分类

Vision Transformer (ViT)简介

ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。

模型结构

ViT模型的主体结构是基于Transformer模型的Encoder部分(部分结构顺序有调整,如:Normalization的位置与标准Transformer不同),结构如如下:

模型特点

  1. 数据集的原图像被划分为多个patch(图像块)后,将二维patch(不考虑channel)转换为一维向量,再加上类别向量与位置向量作为模型输入。

  2. 模型主体的Block结构是基于Transformer的Encoder结构,但是调整了Normalization的位置,其中,最主要的结构依然是Multi-head Attention结构。

  3. 模型在Blocks堆叠后接全连接层,接受类别向量的输出作为输入并用于分类。通常情况下,我们将最后的全连接层称为Head,Transformer Encoder部分为backbone。

环境准备与数据读取

使用ImageNet数据集

python 复制代码
from download import download

dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/vit_imagenet_dataset.zip"
path = "./"

path = download(dataset_url, path, kind="zip", replace=True)
python 复制代码
import os

import mindspore as ms
from mindspore.dataset import ImageFolderDataset
import mindspore.dataset.vision as transforms


data_path = './dataset/'
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]

dataset_train = ImageFolderDataset(os.path.join(data_path, "train"), shuffle=True)

trans_train = [
    transforms.RandomCropDecodeResize(size=224,
                                      scale=(0.08, 1.0),
                                      ratio=(0.75, 1.333)),
    transforms.RandomHorizontalFlip(prob=0.5),
    transforms.Normalize(mean=mean, std=std),
    transforms.HWC2CHW()
]

dataset_train = dataset_train.map(operations=trans_train, input_columns=["image"])
dataset_train = dataset_train.batch(batch_size=16, drop_remainder=True)

模型解析

Transformer基本原理

基于Attention机制的编码器-解码器型结构在自然语言处理领域具有重大意义。模型结构如下图所示:

其主要结构为多个Encoder和Decoder模块所组成,其中Encoder和Decoder的详细结构如下图所示:

其中最重要的结构是多头注意力(Multi-Head Attention)结构,该结构基于自注意力(Self-Attention)机制,是多个Self-Attention的并行组成。

Attention模块

Self-Attention的核心内容是为输入向量的每个单词学习一个权重。通过给定一个任务相关的查询向量Query向量,计算Query和各个Key的相似性或者相关性得到注意力分布,即得到每个Key对应Value的权重系数,然后对Value进行加权求和得到最终的Attention数值。

在Self-Attention中:

  1. 最初的输入向量首先会经过Embedding层映射成Q(Query),K(Key),V(Value)三个向量。
  1. 自注意力机制的自注意主要体现在它的Q,K,V都来源于其自身,也就是该过程是在提取输入的不同顺序的向量的联系与特征,最终通过不同顺序向量之间的联系紧密性(Q与K乘积经过Softmax的结果)来表现出来。
  1. 其最终输出则是通过V这个映射后的向量与Q,K经过Softmax结果进行weight sum获得,这个过程可以理解为在全局上进行自注意表示。

多头注意力机制就是将原本self-Attention处理的向量分割为多个Head进行处理,这一点也可以从代码中体现,这也是attention结构可以进行并行加速的一个方面。

总结来说,多头注意力机制在保持参数总量不变的情况下,将同样的query, key和value映射到原来的高维空间(Q,K,V)的不同子空间(Q_0,K_0,V_0)中进行自注意力的计算,最后再合并不同子空间中的注意力信息。

所以,对于同一个输入向量,多个注意力机制可以同时对其进行处理,即利用并行计算加速处理过程,又在处理的时候更充分的分析和利用了向量特征。下图展示了多头注意力机制,其并行能力的主要体现在下图中的a1和a2是同一个向量进行分割获得的。

Multi-Head Attention代码实现

python 复制代码
from mindspore import nn, ops


class Attention(nn.Cell):
    def __init__(self,
                 dim: int,
                 num_heads: int = 8,
                 keep_prob: float = 1.0,
                 attention_keep_prob: float = 1.0):
        super(Attention, self).__init__()

        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = ms.Tensor(head_dim ** -0.5)

        self.qkv = nn.Dense(dim, dim * 3)
        self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)
        self.out = nn.Dense(dim, dim)
        self.out_drop = nn.Dropout(p=1.0-keep_prob)
        self.attn_matmul_v = ops.BatchMatMul()
        self.q_matmul_k = ops.BatchMatMul(transpose_b=True)
        self.softmax = nn.Softmax(axis=-1)

    def construct(self, x):
        """Attention construct."""
        b, n, c = x.shape
        qkv = self.qkv(x)
        qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))
        qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))
        q, k, v = ops.unstack(qkv, axis=0)
        attn = self.q_matmul_k(q, k)
        attn = ops.mul(attn, self.scale)
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)
        out = self.attn_matmul_v(attn, v)
        out = ops.transpose(out, (0, 2, 1, 3))
        out = ops.reshape(out, (b, n, c))
        out = self.out(out)
        out = self.out_drop(out)

        return out

Transformer Encoder

Self-Attention与Feed Forward,Residual Connection等结构的拼接就可以形成Transformer的基础结构,代码实现如下:

python 复制代码
from typing import Optional, Dict


class FeedForward(nn.Cell):
    def __init__(self,
                 in_features: int,
                 hidden_features: Optional[int] = None,
                 out_features: Optional[int] = None,
                 activation: nn.Cell = nn.GELU,
                 keep_prob: float = 1.0):
        super(FeedForward, self).__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.dense1 = nn.Dense(in_features, hidden_features)
        self.activation = activation()
        self.dense2 = nn.Dense(hidden_features, out_features)
        self.dropout = nn.Dropout(p=1.0-keep_prob)

    def construct(self, x):
        """Feed Forward construct."""
        x = self.dense1(x)
        x = self.activation(x)
        x = self.dropout(x)
        x = self.dense2(x)
        x = self.dropout(x)

        return x


class ResidualCell(nn.Cell):
    def __init__(self, cell):
        super(ResidualCell, self).__init__()
        self.cell = cell

    def construct(self, x):
        """ResidualCell construct."""
        return self.cell(x) + x

利用Self-Attention来构建ViT模型中的TransformerEncoder部分,类似于构建了一个Transformer的编码器部分

  1. ViT模型中的基础结构与标准Transformer有所不同,主要在于Normalization的位置是放在Self-Attention和Feed Forward之前,其他结构如Residual Connection,Feed Forward,Normalization都如Transformer中所设计。

  2. 从Transformer结构的图片可以发现,多个子encoder的堆叠就完成了模型编码器的构建,在ViT模型中,依然沿用这个思路,通过配置超参数num_layers,就可以确定堆叠层数。

  3. Residual Connection,Normalization的结构可以保证模型有很强的扩展性(保证信息经过深层处理不会出现退化的现象,这是Residual Connection的作用),Normalization和dropout的应用可以增强模型泛化能力。

将TransformerEncoder结构和一个多层感知器(MLP)结合,就构成了ViT模型的backbone部分。

python 复制代码
class TransformerEncoder(nn.Cell):
    def __init__(self,
                 dim: int,
                 num_layers: int,
                 num_heads: int,
                 mlp_dim: int,
                 keep_prob: float = 1.,
                 attention_keep_prob: float = 1.0,
                 drop_path_keep_prob: float = 1.0,
                 activation: nn.Cell = nn.GELU,
                 norm: nn.Cell = nn.LayerNorm):
        super(TransformerEncoder, self).__init__()
        layers = []

        for _ in range(num_layers):
            normalization1 = norm((dim,))
            normalization2 = norm((dim,))
            attention = Attention(dim=dim,
                                  num_heads=num_heads,
                                  keep_prob=keep_prob,
                                  attention_keep_prob=attention_keep_prob)

            feedforward = FeedForward(in_features=dim,
                                      hidden_features=mlp_dim,
                                      activation=activation,
                                      keep_prob=keep_prob)

            layers.append(
                nn.SequentialCell([
                    ResidualCell(nn.SequentialCell([normalization1, attention])),
                    ResidualCell(nn.SequentialCell([normalization2, feedforward]))
                ])
            )
        self.layers = nn.SequentialCell(layers)

    def construct(self, x):
        """Transformer construct."""
        return self.layers(x)

ViT模型的输入

  1. 通过将输入图像在每个channel上划分为1616个patch

  2. 将每一个patch的矩阵拉伸成为一个一维向量,从而获得了近似词向量堆叠的效果

具体Patch Embedding代码如下:

python 复制代码
class PatchEmbedding(nn.Cell):
    MIN_NUM_PATCHES = 4

    def __init__(self,
                 image_size: int = 224,
                 patch_size: int = 16,
                 embed_dim: int = 768,
                 input_channels: int = 3):
        super(PatchEmbedding, self).__init__()

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = (image_size // patch_size) ** 2
        self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)

    def construct(self, x):
        """Path Embedding construct."""
        x = self.conv(x)
        b, c, h, w = x.shape
        x = ops.reshape(x, (b, c, h * w))
        x = ops.transpose(x, (0, 2, 1))

        return x

整体构建ViT

python 复制代码
from mindspore.common.initializer import Normal
from mindspore.common.initializer import initializer
from mindspore import Parameter


def init(init_type, shape, dtype, name, requires_grad):
    """Init."""
    initial = initializer(init_type, shape, dtype).init_data()
    return Parameter(initial, name=name, requires_grad=requires_grad)


class ViT(nn.Cell):
    def __init__(self,
                 image_size: int = 224,
                 input_channels: int = 3,
                 patch_size: int = 16,
                 embed_dim: int = 768,
                 num_layers: int = 12,
                 num_heads: int = 12,
                 mlp_dim: int = 3072,
                 keep_prob: float = 1.0,
                 attention_keep_prob: float = 1.0,
                 drop_path_keep_prob: float = 1.0,
                 activation: nn.Cell = nn.GELU,
                 norm: Optional[nn.Cell] = nn.LayerNorm,
                 pool: str = 'cls') -> None:
        super(ViT, self).__init__()

        self.patch_embedding = PatchEmbedding(image_size=image_size,
                                              patch_size=patch_size,
                                              embed_dim=embed_dim,
                                              input_channels=input_channels)
        num_patches = self.patch_embedding.num_patches

        self.cls_token = init(init_type=Normal(sigma=1.0),
                              shape=(1, 1, embed_dim),
                              dtype=ms.float32,
                              name='cls',
                              requires_grad=True)

        self.pos_embedding = init(init_type=Normal(sigma=1.0),
                                  shape=(1, num_patches + 1, embed_dim),
                                  dtype=ms.float32,
                                  name='pos_embedding',
                                  requires_grad=True)

        self.pool = pool
        self.pos_dropout = nn.Dropout(p=1.0-keep_prob)
        self.norm = norm((embed_dim,))
        self.transformer = TransformerEncoder(dim=embed_dim,
                                              num_layers=num_layers,
                                              num_heads=num_heads,
                                              mlp_dim=mlp_dim,
                                              keep_prob=keep_prob,
                                              attention_keep_prob=attention_keep_prob,
                                              drop_path_keep_prob=drop_path_keep_prob,
                                              activation=activation,
                                              norm=norm)
        self.dropout = nn.Dropout(p=1.0-keep_prob)
        self.dense = nn.Dense(embed_dim, num_classes)

    def construct(self, x):
        """ViT construct."""
        x = self.patch_embedding(x)
        cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))
        x = ops.concat((cls_tokens, x), axis=1)
        x += self.pos_embedding

        x = self.pos_dropout(x)
        x = self.transformer(x)
        x = self.norm(x)
        x = x[:, 0]
        if self.training:
            x = self.dropout(x)
        x = self.dense(x)

        return x

整体流程图如下:

模型训练与推理

模型训练

python 复制代码
from mindspore.nn import LossBase
from mindspore.train import LossMonitor, TimeMonitor, CheckpointConfig, ModelCheckpoint
from mindspore import train

# define super parameter
epoch_size = 10
momentum = 0.9
num_classes = 1000
resize = 224
step_size = dataset_train.get_dataset_size()

# construct model
network = ViT()

# load ckpt
vit_url = "https://download.mindspore.cn/vision/classification/vit_b_16_224.ckpt"
path = "./ckpt/vit_b_16_224.ckpt"

vit_path = download(vit_url, path, replace=True)
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)

# define learning rate
lr = nn.cosine_decay_lr(min_lr=float(0),
                        max_lr=0.00005,
                        total_step=epoch_size * step_size,
                        step_per_epoch=step_size,
                        decay_epoch=10)

# define optimizer
network_opt = nn.Adam(network.trainable_params(), lr, momentum)


# define loss function
class CrossEntropySmooth(LossBase):
    """CrossEntropy."""

    def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
        super(CrossEntropySmooth, self).__init__()
        self.onehot = ops.OneHot()
        self.sparse = sparse
        self.on_value = ms.Tensor(1.0 - smooth_factor, ms.float32)
        self.off_value = ms.Tensor(1.0 * smooth_factor / (num_classes - 1), ms.float32)
        self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)

    def construct(self, logit, label):
        if self.sparse:
            label = self.onehot(label, ops.shape(logit)[1], self.on_value, self.off_value)
        loss = self.ce(logit, label)
        return loss


network_loss = CrossEntropySmooth(sparse=True,
                                  reduction="mean",
                                  smooth_factor=0.1,
                                  num_classes=num_classes)

# set checkpoint
ckpt_config = CheckpointConfig(save_checkpoint_steps=step_size, keep_checkpoint_max=100)
ckpt_callback = ModelCheckpoint(prefix='vit_b_16', directory='./ViT', config=ckpt_config)

# initialize model
# "Ascend + mixed precision" can improve performance
ascend_target = (ms.get_context("device_target") == "Ascend")
if ascend_target:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O2")
else:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O0")

# train model
model.train(epoch_size,
            dataset_train,
            callbacks=[ckpt_callback, LossMonitor(125), TimeMonitor(125)],
            dataset_sink_mode=False,)

模型验证

与训练过程相似,首先进行数据增强,然后定义ViT网络结构,加载预训练模型参数。随后设置损失函数,评价指标等,编译模型后进行验证。本案例采用了业界通用的评价标准Top_1_Accuracy和Top_5_Accuracy评价指标来评价模型表现。

python 复制代码
dataset_val = ImageFolderDataset(os.path.join(data_path, "val"), shuffle=True)

trans_val = [
    transforms.Decode(),
    transforms.Resize(224 + 32),
    transforms.CenterCrop(224),
    transforms.Normalize(mean=mean, std=std),
    transforms.HWC2CHW()
]

dataset_val = dataset_val.map(operations=trans_val, input_columns=["image"])
dataset_val = dataset_val.batch(batch_size=16, drop_remainder=True)

# construct model
network = ViT()

# load ckpt
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)

network_loss = CrossEntropySmooth(sparse=True,
                                  reduction="mean",
                                  smooth_factor=0.1,
                                  num_classes=num_classes)

# define metric
eval_metrics = {'Top_1_Accuracy': train.Top1CategoricalAccuracy(),
                'Top_5_Accuracy': train.Top5CategoricalAccuracy()}

if ascend_target:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O2")
else:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O0")

# evaluate model
result = model.eval(dataset_val)
print(result)

输出结果:

python 复制代码
{'Top_1_Accuracy': 0.7495, 'Top_5_Accuracy': 0.928}

模型推理

在进行模型推理之前,首先要定义一个对推理图片进行数据预处理的方法。该方法可以对推理图片进行resize和normalize处理,这样才能与训练时的输入数据匹配。

本案例采用了一张Doberman的图片作为推理图片来测试模型表现,期望模型可以给出正确的预测结果。

python 复制代码
dataset_infer = ImageFolderDataset(os.path.join(data_path, "infer"), shuffle=True)

trans_infer = [
    transforms.Decode(),
    transforms.Resize([224, 224]),
    transforms.Normalize(mean=mean, std=std),
    transforms.HWC2CHW()
]

dataset_infer = dataset_infer.map(operations=trans_infer,
                                  input_columns=["image"],
                                  num_parallel_workers=1)
dataset_infer = dataset_infer.batch(1)

在推理过程中,通过index2label就可以获取对应标签,再通过自定义的show_result接口将结果写在对应图片上。

python 复制代码
import os
import pathlib
import cv2
import numpy as np
from PIL import Image
from enum import Enum
from scipy import io


class Color(Enum):
    """dedine enum color."""
    red = (0, 0, 255)
    green = (0, 255, 0)
    blue = (255, 0, 0)
    cyan = (255, 255, 0)
    yellow = (0, 255, 255)
    magenta = (255, 0, 255)
    white = (255, 255, 255)
    black = (0, 0, 0)


def check_file_exist(file_name: str):
    """check_file_exist."""
    if not os.path.isfile(file_name):
        raise FileNotFoundError(f"File `{file_name}` does not exist.")


def color_val(color):
    """color_val."""
    if isinstance(color, str):
        return Color[color].value
    if isinstance(color, Color):
        return color.value
    if isinstance(color, tuple):
        assert len(color) == 3
        for channel in color:
            assert 0 <= channel <= 255
        return color
    if isinstance(color, int):
        assert 0 <= color <= 255
        return color, color, color
    if isinstance(color, np.ndarray):
        assert color.ndim == 1 and color.size == 3
        assert np.all((color >= 0) & (color <= 255))
        color = color.astype(np.uint8)
        return tuple(color)
    raise TypeError(f'Invalid type for color: {type(color)}')


def imread(image, mode=None):
    """imread."""
    if isinstance(image, pathlib.Path):
        image = str(image)

    if isinstance(image, np.ndarray):
        pass
    elif isinstance(image, str):
        check_file_exist(image)
        image = Image.open(image)
        if mode:
            image = np.array(image.convert(mode))
    else:
        raise TypeError("Image must be a `ndarray`, `str` or Path object.")

    return image


def imwrite(image, image_path, auto_mkdir=True):
    """imwrite."""
    if auto_mkdir:
        dir_name = os.path.abspath(os.path.dirname(image_path))
        if dir_name != '':
            dir_name = os.path.expanduser(dir_name)
            os.makedirs(dir_name, mode=777, exist_ok=True)

    image = Image.fromarray(image)
    image.save(image_path)


def imshow(img, win_name='', wait_time=0):
    """imshow"""
    cv2.imshow(win_name, imread(img))
    if wait_time == 0:  # prevent from hanging if windows was closed
        while True:
            ret = cv2.waitKey(1)

            closed = cv2.getWindowProperty(win_name, cv2.WND_PROP_VISIBLE) < 1
            # if user closed window or if some key pressed
            if closed or ret != -1:
                break
    else:
        ret = cv2.waitKey(wait_time)


def show_result(img: str,
                result: Dict[int, float],
                text_color: str = 'green',
                font_scale: float = 0.5,
                row_width: int = 20,
                show: bool = False,
                win_name: str = '',
                wait_time: int = 0,
                out_file: Optional[str] = None) -> None:
    """Mark the prediction results on the picture."""
    img = imread(img, mode="RGB")
    img = img.copy()
    x, y = 0, row_width
    text_color = color_val(text_color)
    for k, v in result.items():
        if isinstance(v, float):
            v = f'{v:.2f}'
        label_text = f'{k}: {v}'
        cv2.putText(img, label_text, (x, y), cv2.FONT_HERSHEY_COMPLEX,
                    font_scale, text_color)
        y += row_width
    if out_file:
        show = False
        imwrite(img, out_file)

    if show:
        imshow(img, win_name, wait_time)


def index2label():
    """Dictionary output for image numbers and categories of the ImageNet dataset."""
    metafile = os.path.join(data_path, "ILSVRC2012_devkit_t12/data/meta.mat")
    meta = io.loadmat(metafile, squeeze_me=True)['synsets']

    nums_children = list(zip(*meta))[4]
    meta = [meta[idx] for idx, num_children in enumerate(nums_children) if num_children == 0]

    _, wnids, classes = list(zip(*meta))[:3]
    clssname = [tuple(clss.split(', ')) for clss in classes]
    wnid2class = {wnid: clss for wnid, clss in zip(wnids, clssname)}
    wind2class_name = sorted(wnid2class.items(), key=lambda x: x[0])

    mapping = {}
    for index, (_, class_name) in enumerate(wind2class_name):
        mapping[index] = class_name[0]
    return mapping


# Read data for inference
for i, image in enumerate(dataset_infer.create_dict_iterator(output_numpy=True)):
    image = image["image"]
    image = ms.Tensor(image)
    prob = model.predict(image)
    label = np.argmax(prob.asnumpy(), axis=1)
    mapping = index2label()
    output = {int(label): mapping[int(label)]}
    print(output)
    show_result(img="./dataset/infer/n01440764/ILSVRC2012_test_00000279.JPEG",
                result=output,
                out_file="./dataset/infer/ILSVRC2012_test_00000279.JPEG")

输出结果:

python 复制代码
{236: 'Doberman'}

图片结果如下,与期望结果相同,验证了模型的准确性

总结

本案例完成了一个ViT模型在ImageNet数据上进行训练,验证和推理的过程,通过学习本案例,了解了Multi-Head Attention,TransformerEncoder,pos_embedding等关键概念。

相关推荐
Mephisto.java2 小时前
【大数据学习 | Spark-Core】详解Spark的Shuffle阶段
大数据·学习·spark
南宫生2 小时前
力扣-位运算-3【算法学习day.43】
学习·算法·leetcode
xnuscd2 小时前
Milvus概念
数据库·学习·mysql
醉酒柴柴2 小时前
【代码pycharm】动手学深度学习v2-08 线性回归 + 基础优化算法
深度学习·算法·pycharm
啊啊啊六子2 小时前
windows下安装wsl的ubuntu,同时配置深度学习环境
windows·深度学习·ubuntu
神秘的土鸡3 小时前
基于预测反馈的情感分析情境学习
学习
HABuo3 小时前
【数据结构与算法】合并链表、链表分割、链表回文结构
c语言·开发语言·数据结构·c++·学习·算法·链表
AI完全体4 小时前
【AI日记】24.11.25 学习谷歌数据分析初级课程-第6课
学习·数据分析
码到成龚4 小时前
《数字图像处理基础》学习06-图像几何变换之最邻近插值法缩小图像
图像处理·学习
fa_lsyk4 小时前
mysql window安装(学习使用)
学习·mysql·adb