红黑树插入删除流程(流程图)

红黑树插入删除流程(流程图)

红黑树性质

  • 左根右(二叉树)
  • 根叶黑(根节点是黑色的)
  • 不红红(不存在相邻两个红色节点)
  • 黑路同(对于每个节点,从该节点出发到任一空叶节点所经过的黑节点数目相同);
  • 同时认为每个叶节点(NIL节点)是黑色

插入流程

  • 首先按照二叉树排序树的规则确定要插入的位置(要插的位置一定是叶节点,即假设和二叉排序树一样不做调整,插入后一定是叶节点)
  • 若新节点是根节点,染为黑色,结束
  • 否则默认先染为红色,这时判断它的父节点是不是红色(是否破坏不红红规则)
    • 若没有破坏不红红规则,结束
    • 破坏了不红红规则(父节点是红色),接下来看叔叔节点的脸色行事
      • 黑叔,旋转+染色:LL/RR型,父爷颜色对换+左/右单旋;LR/RL型,儿爷颜色对换+左右/右左双旋;结束
      • 红树,染色+变新:叔、父、爷都进行颜色更换,爷点变为新节点,向上检查(若此时新节点为黑色则结束,若红色则重新开始以新节点的视角进行调整)

补充:当插入一个新节点时,因为新节点是红色的,因此可能会破坏性质3(没有两个相邻的红色节点)或性质2(根节点是黑色的),但不会破坏其他性质。所以除开新节点是根的情况,插入过程中只需要看是否破坏了"不红红"的规则。

删除流程

删除黑色节点的时候会破坏黑路同的规则,为了便于理解调整的过程,引入标记概念(当前是哪个点破坏了红黑树的规则),后面调整的时候的任务就是清除标记。所以说如果删除的是没有孩子的黑色节点,就会出现标记。

同时便于描述,记符号r为兄弟节点的红孩子,s为兄弟节点,p为父节点。此外,LL,RR型的节点情况和上方有些许不同:只要s是p的左孩子,r是s的左孩子,就是LL型(即使s有两个红节点);同样的,只要s是p的右孩子,r是s的右孩子,就是RR型(即使s有两个红节点)

  • 先查找,确定要删除的节点,看要删除的节点是否是叶子节点?
  • 不是叶子节点
    • 左右子树都存在,则进行直接后继/前驱代替值,然后改为删除替换的节点,然后回到上一步看要删除的节点是否是叶子节点。
    • 只有左孩子/右孩子,则用孩子代替后变黑,结束。(这里只有单个孩子的情况下,只能是当前节点是黑色,孩子是红色,不会是其他情况,否则就破坏了黑路同或者不红红的规则)
  • 是叶子节点,则看节点的颜色?
    • 红节点,直接删除,结束
    • 黑节点,删除后变空节点,同时附上标记,接下来看兄弟的脸色行事?
      • 红兄弟:兄父颜色对换,朝标记点旋转,回到上一步,继续看标记节点的脸色行事
      • 黑兄弟,看兄弟有几个红孩子?
        • 至少一个红孩子:看r,s,p形状(LL,RR,LR,RL)进行变色+旋转
          • LL型:r变s,s变p,p变黑,右旋,清除标记
          • RR型:r变s,s变p,p变黑,左旋,清除标记
          • LR型:r变p,p变黑,左旋右旋,清除标记
          • RL型:r变p,p变黑,右旋左旋,清除标记
        • 没有红孩子:兄弟变红,标记向父转移,再看标记现在是否是红节点或根节点?
          • 是红节点或根节点,节点直接变黑,清除标记
          • 是黑节点,回到上上步,继续看标记节点的脸色行事

实践

实践是检验真理的唯一标准。由于部分过程文字描述的不够形象,特别是旋转部分,所以推荐使用可视化红黑树进行对比学习,点这里

这里给出数据进行学习:

  • 插入:20,10,5,30,40,57,3,2,4,35,25,18,22,23,24,19,18
  • 删除:先构建出来{15,9,18,6,13,17,27,10,23,34,25,37},再按一下顺序删除{18,25,15,6,13,37,27,17,34,9,10,23}

推荐学习资源:

红黑树 - 删除

王道数据结构笔记03-红黑树/RBT

相关推荐
此生只爱蛋12 分钟前
【手撕排序2】快速排序
c语言·c++·算法·排序算法
blammmp19 分钟前
Java:数据结构-枚举
java·开发语言·数据结构
昂子的博客41 分钟前
基础数据结构——队列(链表实现)
数据结构
咕咕吖43 分钟前
对称二叉树(力扣101)
算法·leetcode·职场和发展
九圣残炎1 小时前
【从零开始的LeetCode-算法】1456. 定长子串中元音的最大数目
java·算法·leetcode
lulu_gh_yu1 小时前
数据结构之排序补充
c语言·开发语言·数据结构·c++·学习·算法·排序算法
丫头,冲鸭!!!2 小时前
B树(B-Tree)和B+树(B+ Tree)
笔记·算法
Re.不晚2 小时前
Java入门15——抽象类
java·开发语言·学习·算法·intellij-idea
为什么这亚子3 小时前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算
3 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习