昇思学习打卡-5-基于Mindspore实现BERT对话情绪识别

本章节学习一个基本实践--基于Mindspore实现BERT对话情绪识别

自然语言处理任务的应用很广泛,如预训练语言模型例如问答、自然语言推理、命名实体识别与文本分类、搜索引擎优化、机器翻译、语音识别与合成、情感分析、聊天机器人与虚拟助手、文本摘要与生成、信息抽取与知识图谱、个性化推荐等等很多方面。

BERT模型是比较基础的典型的语言模型,创新点都在pre-train方法上,即用了Masked Language Model和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。

1、在用Masked Language Model方法训练BERT的时候,随机把语料库 中15%的单词做Mask操作。

2、对于这15%的单词做Mask操作分为三种情况:80%的单词直接用[Mask]替换、10%的单词直接替换成另一个新的单词、10%的单词保持不变。

Next Sentence Prediction:训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,BERT模型预测B是不是A的下一句。因为涉及到Question Answering (QA) 和 Natural Language Inference (NLI)之类的任务,增加了Next Sentence Prediction预训练任务,目的是让模型理解两个句子之间的联系。

对话情绪识别(Emotion Detection,简称EmoTect):识别智能对话场景中用户的情绪。针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。

安装mindnlp库并查看相关信息

训练完测试了2个,感觉第二个好像不太对,可能有些词看语境和语调吧,模型只能看表象

此章节学习到此结束,感谢昇思平台。

相关推荐
Re_Yang0913 分钟前
2025年统计与数据分析领域专业认证发展指南
服务器·人工智能·数据分析
西猫雷婶15 分钟前
pytorch基本运算-分离计算
人工智能·pytorch·python·深度学习·神经网络·机器学习
数新网络17 分钟前
PyTorch
人工智能·pytorch·python
程序员miki18 分钟前
RNN循环神经网络(一):基础RNN结构、双向RNN
人工智能·pytorch·rnn·深度学习
自信的小螺丝钉22 分钟前
【大模型手撕】pytorch实现LayerNorm, RMSNorm
人工智能·pytorch·python·归一化·rmsnorm·layernorm
深耕AI22 分钟前
PyTorch图像预处理:ToTensor()与Normalize()的本质区别
人工智能·pytorch·python
T1an-124 分钟前
Axum web框架【实习】
学习·rust
知识分享小能手25 分钟前
React学习教程,从入门到精通, React 新创建组件语法知识点及案例代码(11)
前端·javascript·学习·react.js·架构·前端框架·react
moonsims34 分钟前
SKYTRAC-无人机、无人机系统和城市空中交通卫星通信 – BVLOS 和 C2 卫星通信终端和任务服务器
人工智能
云卓SKYDROID37 分钟前
无人机电压模块技术剖析
人工智能·无人机·电压·高科技·云卓科技