昇思学习打卡-5-基于Mindspore实现BERT对话情绪识别

本章节学习一个基本实践--基于Mindspore实现BERT对话情绪识别

自然语言处理任务的应用很广泛,如预训练语言模型例如问答、自然语言推理、命名实体识别与文本分类、搜索引擎优化、机器翻译、语音识别与合成、情感分析、聊天机器人与虚拟助手、文本摘要与生成、信息抽取与知识图谱、个性化推荐等等很多方面。

BERT模型是比较基础的典型的语言模型,创新点都在pre-train方法上,即用了Masked Language Model和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。

1、在用Masked Language Model方法训练BERT的时候,随机把语料库 中15%的单词做Mask操作。

2、对于这15%的单词做Mask操作分为三种情况:80%的单词直接用[Mask]替换、10%的单词直接替换成另一个新的单词、10%的单词保持不变。

Next Sentence Prediction:训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,BERT模型预测B是不是A的下一句。因为涉及到Question Answering (QA) 和 Natural Language Inference (NLI)之类的任务,增加了Next Sentence Prediction预训练任务,目的是让模型理解两个句子之间的联系。

对话情绪识别(Emotion Detection,简称EmoTect):识别智能对话场景中用户的情绪。针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。

安装mindnlp库并查看相关信息

训练完测试了2个,感觉第二个好像不太对,可能有些词看语境和语调吧,模型只能看表象

此章节学习到此结束,感谢昇思平台。

相关推荐
33三 三like1 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a1 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者2 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗2 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
盐焗西兰花2 小时前
鸿蒙学习实战之路-Reader Kit修改翻页方式字体大小及行间距最佳实践
学习·华为·harmonyos
QiZhang | UESTC3 小时前
学习日记day76
学习
久邦科技3 小时前
20个免费电子书下载网站,实现电子书自由(2025持续更新)
学习
Coder_Boy_3 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
Gain_chance3 小时前
34-学习笔记尚硅谷数仓搭建-DWS层最近一日汇总表建表语句汇总
数据仓库·hive·笔记·学习·datagrip