昇思学习打卡-5-基于Mindspore实现BERT对话情绪识别

本章节学习一个基本实践--基于Mindspore实现BERT对话情绪识别

自然语言处理任务的应用很广泛,如预训练语言模型例如问答、自然语言推理、命名实体识别与文本分类、搜索引擎优化、机器翻译、语音识别与合成、情感分析、聊天机器人与虚拟助手、文本摘要与生成、信息抽取与知识图谱、个性化推荐等等很多方面。

BERT模型是比较基础的典型的语言模型,创新点都在pre-train方法上,即用了Masked Language Model和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。

1、在用Masked Language Model方法训练BERT的时候,随机把语料库 中15%的单词做Mask操作。

2、对于这15%的单词做Mask操作分为三种情况:80%的单词直接用[Mask]替换、10%的单词直接替换成另一个新的单词、10%的单词保持不变。

Next Sentence Prediction:训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,BERT模型预测B是不是A的下一句。因为涉及到Question Answering (QA) 和 Natural Language Inference (NLI)之类的任务,增加了Next Sentence Prediction预训练任务,目的是让模型理解两个句子之间的联系。

对话情绪识别(Emotion Detection,简称EmoTect):识别智能对话场景中用户的情绪。针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。

安装mindnlp库并查看相关信息

训练完测试了2个,感觉第二个好像不太对,可能有些词看语境和语调吧,模型只能看表象

此章节学习到此结束,感谢昇思平台。

相关推荐
Solar20253 分钟前
TOB企业智能获客新范式:基于数据驱动与AI的销售线索挖掘与孵化架构实践
人工智能·架构
AI营销实验室18 分钟前
原圈科技如何以多智能体赋能AI营销内容生产新范式
人工智能
视***间21 分钟前
智驱万物,视联未来 —— 视程空间以 AI 硬科技赋能全场景智能革新
人工智能·边缘计算·视程空间·ai算力开发板
一个java开发40 分钟前
mcp demo 智能天气服务:经纬度预报与城市警报
人工智能
阿里云大数据AI技术42 分钟前
OmniThoughtV:面向多模态深度思考的高质量数据蒸馏
人工智能
jkyy20141 小时前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
hy15687861 小时前
coze编程-工作流-起起起---废(一句话生成工作流)
人工智能·coze·自动编程
hssfscv1 小时前
Javaweb 学习笔记——html+css
前端·笔记·学习
brave and determined1 小时前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
Fuly10241 小时前
MCP协议的简介和简单实现
人工智能·langchain