前缀和数组 差分数组

前缀和

一维:通过空间换时间适用于需要频繁查询某一段区间和的场景。

一维数组:

一维前缀和中的每一项:

,该前缀和中的每一项也就是数组中对应的前 i 项和。

一维前缀和数组的构造:

在输入原数组时同步构造前缀和数组可以改写为

cpp 复制代码
for(int i=1;i<=n;i++){
    scanf("%d",&arr[i]);
    crr[i]=crr[i-1]+arr[i];
  }

通常前缀和数组从下标为1开始的值默认为0

一维区间和查询:

查询原数组区间为 [ l , r ] 的元素的和:

二维:通过空间换时间适用于需要频繁查询某一个子矩阵中元素和的场景。

二维数组:

. . . . . . . . . . . . . . .

二维前缀和中的每一项:

,该前缀和中的每一项也就是数组中以这两个元素为对角线构成的矩形中元素和。

二维前缀和数组的构造:

也是在输入原数组时同步构造前缀和数组 根据二维数组一行一行地读入顺序可以改写为 ,运用这种类似于dp的想法就可以实现。

cpp 复制代码
for(int i=1;i<=n;i++){
    int sum=0;
    for(int j=1;j<=m;j++){
      scanf("%d",drr[i][j]);
      sum+=drr[i][j];
      crr[i][j]=crr[i-1][j]+sum;
    }
  }

和一维类似:行和列的都从1开始

二维子矩阵元素和查询:

查询以为对角线构成的子矩阵中元素和:

差分

一维:通过空间换时间适用于需要频繁进行区间数值的批量增减操作的场景。

一维数组:

一维差分数组中的每一项:

一维差分数组的构造:

边输入原数组边构造

cpp 复制代码
for(int i=1;i<=n;i++){
    scanf("%d",arr+i);
    diff[i]=arr[i]-arr[i-1];
  }

一维差分数组与原数组的推导关系: 由差分数组定义移项可得:

一维差分数组实现区间批量增减:

让区间 [ l , r ] 上的元素加x:让 加上x,让 减去x

这种区间批量增减操作是静态的无法一遍查询一边修改,需要统一在差分数组上修改完毕后再通过差分数组与原数组的关系还原回原数组,再实现查询。

二维:等待补充。。。。

相关推荐
workflower2 小时前
单元测试-例子
java·开发语言·算法·django·个人开发·结对编程
MicroTech20254 小时前
微算法科技(MLGO)研发突破性低复杂度CFG算法,成功缓解边缘分裂学习中的掉队者问题
科技·学习·算法
墨染点香4 小时前
LeetCode 刷题【126. 单词接龙 II】
算法·leetcode·职场和发展
aloha_7895 小时前
力扣hot100做题整理91-100
数据结构·算法·leetcode
Tiny番茄5 小时前
31.下一个排列
数据结构·python·算法·leetcode
挂科是不可能出现的5 小时前
最长连续序列
数据结构·c++·算法
前端小L6 小时前
动态规划的“数学之魂”:从DP推演到质因数分解——巧解「只有两个键的键盘」
算法·动态规划
RTC老炮6 小时前
webrtc弱网-ReceiveSideCongestionController类源码分析及算法原理
网络·算法·webrtc
21号 16 小时前
9.Redis 集群(重在理解)
数据库·redis·算法
hadage2338 小时前
--- 数据结构 AVL树 ---
数据结构·算法