前缀和数组 差分数组

前缀和

一维:通过空间换时间适用于需要频繁查询某一段区间和的场景。

一维数组:

一维前缀和中的每一项:

,该前缀和中的每一项也就是数组中对应的前 i 项和。

一维前缀和数组的构造:

在输入原数组时同步构造前缀和数组可以改写为

cpp 复制代码
for(int i=1;i<=n;i++){
    scanf("%d",&arr[i]);
    crr[i]=crr[i-1]+arr[i];
  }

通常前缀和数组从下标为1开始的值默认为0

一维区间和查询:

查询原数组区间为 [ l , r ] 的元素的和:

二维:通过空间换时间适用于需要频繁查询某一个子矩阵中元素和的场景。

二维数组:

. . . . . . . . . . . . . . .

二维前缀和中的每一项:

,该前缀和中的每一项也就是数组中以这两个元素为对角线构成的矩形中元素和。

二维前缀和数组的构造:

也是在输入原数组时同步构造前缀和数组 根据二维数组一行一行地读入顺序可以改写为 ,运用这种类似于dp的想法就可以实现。

cpp 复制代码
for(int i=1;i<=n;i++){
    int sum=0;
    for(int j=1;j<=m;j++){
      scanf("%d",drr[i][j]);
      sum+=drr[i][j];
      crr[i][j]=crr[i-1][j]+sum;
    }
  }

和一维类似:行和列的都从1开始

二维子矩阵元素和查询:

查询以为对角线构成的子矩阵中元素和:

差分

一维:通过空间换时间适用于需要频繁进行区间数值的批量增减操作的场景。

一维数组:

一维差分数组中的每一项:

一维差分数组的构造:

边输入原数组边构造

cpp 复制代码
for(int i=1;i<=n;i++){
    scanf("%d",arr+i);
    diff[i]=arr[i]-arr[i-1];
  }

一维差分数组与原数组的推导关系: 由差分数组定义移项可得:

一维差分数组实现区间批量增减:

让区间 [ l , r ] 上的元素加x:让 加上x,让 减去x

这种区间批量增减操作是静态的无法一遍查询一边修改,需要统一在差分数组上修改完毕后再通过差分数组与原数组的关系还原回原数组,再实现查询。

二维:等待补充。。。。

相关推荐
Gyoku Mint2 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
葫三生4 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
拓端研究室6 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安8 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董8 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
水木兰亭11 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
Jess0712 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁12 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu12 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu12 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划