【深度学习】第3章实验——回归模型

根据相关数据集进行回归分析

python 复制代码
import statsmodels.api as sm
# df.loc[:, ...] 表示选择所有行。
# df.columns != 'mpg' 创建一个布尔数组,指示哪些列不等于 'mpg'。
# df.loc[:, df.columns != 'mpg'] 选择 df 中所有行和列名不等于 'mpg' 的所有列。
x =df.loc[:,df.columns!='mpg']

#在数据框 x 中添加一列常数值(通常为 1)。
#这一列称为截距项(intercept),在回归分析中非常重要。
#这样做的目的是确保模型在进行线性回归时,包括一个常数项(截距)。
x=sm.add_constant(x)
y = df['mpg']

# 随机抽取 x 数据框中的 6 行数据。
x.sample(6)
python 复制代码
import statsmodels.formula.api as smf

#smf.ols 是使用普通最小二乘法(OLS)进行线性回归分析的函数。
#formula='mpg~hp+C(vs)+C(am)' 定义了回归模型的公式
#mpg 是因变量(或目标变量),即我们要预测的变量。
#hp 是自变量之一,即预测变量。
#C(vs) 和 C(am) 表示 vs 和 am 是分类变量(categorical variables)。C 函数将这些变量视为分类变量,而不是连续变量。
#data=df 指定了数据源 df
#.fit() 方法用于拟合模型,即根据提供的数据进行线性回归分析,并生成一个包含拟合结果的模型对象。
model = smf.ols(formula='mpg~hp+C(vs)+C(am)',data=df).fit()

#打印模型摘要
print(model.summary())
python 复制代码
#使用先前拟合的线性回归模型对新的数据进行预测
y_hat = model.predict(x)
#随机抽取并展示5个预测值:
y_hat.sample(5)
python 复制代码
import numpy as np
#计算模型预测结果的均方根误差
#反映了预测值与实际值之间的差异大小
model_RMSE = np.sqrt(np.mean(np.square(y_hat-y)))
model_RMSE
python 复制代码
fig = plt.figure(figsize=(12,8))
#使用 plot_regress_exog 函数来绘制回归模型的外生变量(exogenous variable)的回归诊断图
fig = sm.graphics.plot_regress_exog(model,"hp",fig = fig)
相关推荐
SUPER526622 分钟前
本地开发环境_spring-ai项目启动异常
java·人工智能·spring
上进小菜猪5 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩5 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方5 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
木头左6 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案6 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者6 小时前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能
腾讯WeTest6 小时前
「低成本、高质高效」WeTest AI翻译限时免费
人工智能
Lucas555555556 小时前
现代C++四十不惑:AI时代系统软件的基石与新征程
开发语言·c++·人工智能
言之。6 小时前
Claude Code 专业教学文档
人工智能