【深度学习】第3章实验——回归模型

根据相关数据集进行回归分析

python 复制代码
import statsmodels.api as sm
# df.loc[:, ...] 表示选择所有行。
# df.columns != 'mpg' 创建一个布尔数组,指示哪些列不等于 'mpg'。
# df.loc[:, df.columns != 'mpg'] 选择 df 中所有行和列名不等于 'mpg' 的所有列。
x =df.loc[:,df.columns!='mpg']

#在数据框 x 中添加一列常数值(通常为 1)。
#这一列称为截距项(intercept),在回归分析中非常重要。
#这样做的目的是确保模型在进行线性回归时,包括一个常数项(截距)。
x=sm.add_constant(x)
y = df['mpg']

# 随机抽取 x 数据框中的 6 行数据。
x.sample(6)
python 复制代码
import statsmodels.formula.api as smf

#smf.ols 是使用普通最小二乘法(OLS)进行线性回归分析的函数。
#formula='mpg~hp+C(vs)+C(am)' 定义了回归模型的公式
#mpg 是因变量(或目标变量),即我们要预测的变量。
#hp 是自变量之一,即预测变量。
#C(vs) 和 C(am) 表示 vs 和 am 是分类变量(categorical variables)。C 函数将这些变量视为分类变量,而不是连续变量。
#data=df 指定了数据源 df
#.fit() 方法用于拟合模型,即根据提供的数据进行线性回归分析,并生成一个包含拟合结果的模型对象。
model = smf.ols(formula='mpg~hp+C(vs)+C(am)',data=df).fit()

#打印模型摘要
print(model.summary())
python 复制代码
#使用先前拟合的线性回归模型对新的数据进行预测
y_hat = model.predict(x)
#随机抽取并展示5个预测值:
y_hat.sample(5)
python 复制代码
import numpy as np
#计算模型预测结果的均方根误差
#反映了预测值与实际值之间的差异大小
model_RMSE = np.sqrt(np.mean(np.square(y_hat-y)))
model_RMSE
python 复制代码
fig = plt.figure(figsize=(12,8))
#使用 plot_regress_exog 函数来绘制回归模型的外生变量(exogenous variable)的回归诊断图
fig = sm.graphics.plot_regress_exog(model,"hp",fig = fig)
相关推荐
工藤学编程7 分钟前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
图生生12 分钟前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai
说私域13 分钟前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序
yugi98783816 分钟前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类
aigcapi19 分钟前
AI搜索排名提升:GEO优化如何成为企业增长新引擎
人工智能
彼岸花开了吗24 分钟前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm
MM_MS25 分钟前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
韩师傅31 分钟前
前端开发消亡史:AI也无法掩盖没有设计创造力的真相
前端·人工智能·后端
AI大佬的小弟33 分钟前
【小白第一课】大模型基础知识(1)---大模型到底是啥?
人工智能·自然语言处理·开源·大模型基础·大模型分类·什么是大模型·国内外主流大模型
lambo mercy40 分钟前
无监督学习
人工智能·深度学习