【深度学习】第3章实验——回归模型

根据相关数据集进行回归分析

python 复制代码
import statsmodels.api as sm
# df.loc[:, ...] 表示选择所有行。
# df.columns != 'mpg' 创建一个布尔数组,指示哪些列不等于 'mpg'。
# df.loc[:, df.columns != 'mpg'] 选择 df 中所有行和列名不等于 'mpg' 的所有列。
x =df.loc[:,df.columns!='mpg']

#在数据框 x 中添加一列常数值(通常为 1)。
#这一列称为截距项(intercept),在回归分析中非常重要。
#这样做的目的是确保模型在进行线性回归时,包括一个常数项(截距)。
x=sm.add_constant(x)
y = df['mpg']

# 随机抽取 x 数据框中的 6 行数据。
x.sample(6)
python 复制代码
import statsmodels.formula.api as smf

#smf.ols 是使用普通最小二乘法(OLS)进行线性回归分析的函数。
#formula='mpg~hp+C(vs)+C(am)' 定义了回归模型的公式
#mpg 是因变量(或目标变量),即我们要预测的变量。
#hp 是自变量之一,即预测变量。
#C(vs) 和 C(am) 表示 vs 和 am 是分类变量(categorical variables)。C 函数将这些变量视为分类变量,而不是连续变量。
#data=df 指定了数据源 df
#.fit() 方法用于拟合模型,即根据提供的数据进行线性回归分析,并生成一个包含拟合结果的模型对象。
model = smf.ols(formula='mpg~hp+C(vs)+C(am)',data=df).fit()

#打印模型摘要
print(model.summary())
python 复制代码
#使用先前拟合的线性回归模型对新的数据进行预测
y_hat = model.predict(x)
#随机抽取并展示5个预测值:
y_hat.sample(5)
python 复制代码
import numpy as np
#计算模型预测结果的均方根误差
#反映了预测值与实际值之间的差异大小
model_RMSE = np.sqrt(np.mean(np.square(y_hat-y)))
model_RMSE
python 复制代码
fig = plt.figure(figsize=(12,8))
#使用 plot_regress_exog 函数来绘制回归模型的外生变量(exogenous variable)的回归诊断图
fig = sm.graphics.plot_regress_exog(model,"hp",fig = fig)
相关推荐
User_芊芊君子20 小时前
AI Ping 深度评测:大模型 API 选型的 “理性决策中枢”,终结经验主义选型时代
人工智能
明天再做行么20 小时前
一些我用人工智能 翻译文章的心得
人工智能
晚霞的不甘1 天前
小智AI音箱:智能语音交互的未来之选
人工智能·交互·neo4j
java1234_小锋1 天前
Transformer 大语言模型(LLM)基石 - Transformer架构介绍
深度学习·语言模型·llm·transformer
飞Link1 天前
【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
网络·人工智能·音视频
yLDeveloper1 天前
一只菜鸟学深度学习的日记:填充 & 步幅 & 下采样
深度学习·dive into deep learning
老蒋新思维1 天前
创客匠人峰会实录:知识变现的场景化革命 —— 创始人 IP 如何在垂直领域建立变现壁垒
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人
老蒋新思维1 天前
创客匠人峰会深度解析:智能体驱动知识变现的数字资产化路径 —— 创始人 IP 的长期增长密码
人工智能·网络协议·tcp/ip·重构·知识付费·创始人ip·创客匠人
为爱停留1 天前
Spring AI实现RAG(检索增强生成)详解与实践
人工智能·深度学习·spring
像风没有归宿a1 天前
2025年人工智能十大技术突破:从AGI到多模态大模型
人工智能