【深度学习】第3章实验——回归模型

根据相关数据集进行回归分析

python 复制代码
import statsmodels.api as sm
# df.loc[:, ...] 表示选择所有行。
# df.columns != 'mpg' 创建一个布尔数组,指示哪些列不等于 'mpg'。
# df.loc[:, df.columns != 'mpg'] 选择 df 中所有行和列名不等于 'mpg' 的所有列。
x =df.loc[:,df.columns!='mpg']

#在数据框 x 中添加一列常数值(通常为 1)。
#这一列称为截距项(intercept),在回归分析中非常重要。
#这样做的目的是确保模型在进行线性回归时,包括一个常数项(截距)。
x=sm.add_constant(x)
y = df['mpg']

# 随机抽取 x 数据框中的 6 行数据。
x.sample(6)
python 复制代码
import statsmodels.formula.api as smf

#smf.ols 是使用普通最小二乘法(OLS)进行线性回归分析的函数。
#formula='mpg~hp+C(vs)+C(am)' 定义了回归模型的公式
#mpg 是因变量(或目标变量),即我们要预测的变量。
#hp 是自变量之一,即预测变量。
#C(vs) 和 C(am) 表示 vs 和 am 是分类变量(categorical variables)。C 函数将这些变量视为分类变量,而不是连续变量。
#data=df 指定了数据源 df
#.fit() 方法用于拟合模型,即根据提供的数据进行线性回归分析,并生成一个包含拟合结果的模型对象。
model = smf.ols(formula='mpg~hp+C(vs)+C(am)',data=df).fit()

#打印模型摘要
print(model.summary())
python 复制代码
#使用先前拟合的线性回归模型对新的数据进行预测
y_hat = model.predict(x)
#随机抽取并展示5个预测值:
y_hat.sample(5)
python 复制代码
import numpy as np
#计算模型预测结果的均方根误差
#反映了预测值与实际值之间的差异大小
model_RMSE = np.sqrt(np.mean(np.square(y_hat-y)))
model_RMSE
python 复制代码
fig = plt.figure(figsize=(12,8))
#使用 plot_regress_exog 函数来绘制回归模型的外生变量(exogenous variable)的回归诊断图
fig = sm.graphics.plot_regress_exog(model,"hp",fig = fig)
相关推荐
搬砖者(视觉算法工程师)3 分钟前
人工智能(AI)的工程原理与应用
人工智能
da_vinci_x9 分钟前
PS 3D Viewer (Beta):概念美术的降维打击,白模直接在PS里转光打影出5张大片
人工智能·游戏·3d·prompt·aigc·材质·游戏美术
飞哥数智坊12 分钟前
提示词工程没死,只是藏得更深了
人工智能
清云逸仙29 分钟前
什么是AI领域的Prompt
人工智能·深度学习·机器学习·prompt
Elastic 中国社区官方博客32 分钟前
在 Elasticsearch 中实现带可观测性的 agentic 搜索以自动调优相关性
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索
生成论实验室36 分钟前
宇宙生成信息编码:易经六十四卦的数学表述与生成论物理学阐释
人工智能·科技·神经网络·信息与通信·几何学
木头左1 小时前
迁移学习的基于股票数据预训练加速
人工智能·机器学习·迁移学习
背影疾风1 小时前
基于深度学习的3D点云特征提取方法梳理
人工智能·深度学习·3d·自动驾驶
新加坡内哥谈技术1 小时前
机器人出租车与郊区生活
人工智能·生活
CareyWYR1 小时前
每周AI论文速递(251117-251121)
人工智能