【深度学习】第3章实验——回归模型

根据相关数据集进行回归分析

python 复制代码
import statsmodels.api as sm
# df.loc[:, ...] 表示选择所有行。
# df.columns != 'mpg' 创建一个布尔数组,指示哪些列不等于 'mpg'。
# df.loc[:, df.columns != 'mpg'] 选择 df 中所有行和列名不等于 'mpg' 的所有列。
x =df.loc[:,df.columns!='mpg']

#在数据框 x 中添加一列常数值(通常为 1)。
#这一列称为截距项(intercept),在回归分析中非常重要。
#这样做的目的是确保模型在进行线性回归时,包括一个常数项(截距)。
x=sm.add_constant(x)
y = df['mpg']

# 随机抽取 x 数据框中的 6 行数据。
x.sample(6)
python 复制代码
import statsmodels.formula.api as smf

#smf.ols 是使用普通最小二乘法(OLS)进行线性回归分析的函数。
#formula='mpg~hp+C(vs)+C(am)' 定义了回归模型的公式
#mpg 是因变量(或目标变量),即我们要预测的变量。
#hp 是自变量之一,即预测变量。
#C(vs) 和 C(am) 表示 vs 和 am 是分类变量(categorical variables)。C 函数将这些变量视为分类变量,而不是连续变量。
#data=df 指定了数据源 df
#.fit() 方法用于拟合模型,即根据提供的数据进行线性回归分析,并生成一个包含拟合结果的模型对象。
model = smf.ols(formula='mpg~hp+C(vs)+C(am)',data=df).fit()

#打印模型摘要
print(model.summary())
python 复制代码
#使用先前拟合的线性回归模型对新的数据进行预测
y_hat = model.predict(x)
#随机抽取并展示5个预测值:
y_hat.sample(5)
python 复制代码
import numpy as np
#计算模型预测结果的均方根误差
#反映了预测值与实际值之间的差异大小
model_RMSE = np.sqrt(np.mean(np.square(y_hat-y)))
model_RMSE
python 复制代码
fig = plt.figure(figsize=(12,8))
#使用 plot_regress_exog 函数来绘制回归模型的外生变量(exogenous variable)的回归诊断图
fig = sm.graphics.plot_regress_exog(model,"hp",fig = fig)
相关推荐
檐下翻书1732 分钟前
产品开发跨职能流程图在线生成工具
大数据·人工智能·架构·流程图·论文笔记
杜子不疼.4 分钟前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
腾视科技1 小时前
腾视科技TS-SG-SM7系列AI算力模组:32TOPS算力引擎,开启边缘智能新纪元
人工智能·科技
chao1898441 小时前
基于MATLAB实现多变量高斯过程回归(GPR)
开发语言·matlab·回归
极新1 小时前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
Light606 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升6 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide7 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农7 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews7 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链