机器学习Day10:聚类

概念

聚类是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性尽可能大

聚类的过程

  1. 数据准备:特征标准化和降维
  2. 特征选择:从最初的特征中选择最有效的特征,并将其存储在向量中
  3. 特征提取:通过对选择的特征进行转换形成新的突出特征
  4. 聚类:基于某种距离函数 进行相似度度量,获取簇
  5. 聚类结果评估:分析聚类结果,如距离误差和等

聚类方法

1.划分类聚类方法

代表:k-means算法

基本思想:对于给定的类别数据k首先给出初始划分 ,通过迭代 改变样本和簇的隶属关系,使得每一次改进后的划分方法都比前一次更好

优点:简单快速;当簇近似于高斯分布时效果好

缺点:在簇的平均值 可被定义时才能使用;对初值敏感

2.层次聚类方法 :对给定的数据集进行层次的分解 ,直到满足某种条件为止

如下图所示,由于a、b某特征有相似之处,将他们聚类一类,以此类推

特征:对噪声敏感

3.基于密度的聚类方法

典型算法:DBSCAN算法

特点:抗噪效果好;性能一般

聚类算法效果评判

  1. 均一性:聚类结果的一致性或者稳定性
  2. 完整性:聚类结果真实类别或标签之间的一致性
  3. V-measure:综合考虑了均一性完整性
  4. ARI:比较了聚类结果与真实类别之间的一致性,考虑了分类中的随机性因素
  5. AMI:聚类结果与真实类别之间的一致性,同时考虑了类别分布的随机性
  6. 轮廓系数:结合了聚类的紧密度(密度 )和分离度(分散度
相关推荐
深鱼~6 小时前
十分钟在 openEuler 上搭建本地 AI 服务:LocalAI 快速部署教程
人工智能
飞哥数智坊6 小时前
不敢把个人信息喂给 AI?OneAIFW 简单搞定隐私保护!
人工智能
Coder_Boy_7 小时前
【人工智能应用技术】-基础实战-环境搭建(基于springAI+通义千问)(二)
数据库·人工智能
Jurio.7 小时前
Python Ray 分布式计算应用
linux·开发语言·python·深度学习·机器学习
爱加糖的橙子7 小时前
Dify升级到Dify v1.10.1-fix修复CVE-2025-55182漏洞
人工智能·python·ai
齐齐大魔王8 小时前
OpenCV
人工智能·opencv·计算机视觉
编程设计3668 小时前
pandas 中 DataFrame、mean()、groupby 和 fillna 函数的核心作用
机器学习·数据挖掘·pandas
老蒋新思维8 小时前
创客匠人峰会实录:创始人 IP 变现的 “人 + 智能体” 协同范式 —— 打破知识变现的能力边界
大数据·网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人