机器学习Day10:聚类

概念

聚类是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性尽可能大

聚类的过程

  1. 数据准备:特征标准化和降维
  2. 特征选择:从最初的特征中选择最有效的特征,并将其存储在向量中
  3. 特征提取:通过对选择的特征进行转换形成新的突出特征
  4. 聚类:基于某种距离函数 进行相似度度量,获取簇
  5. 聚类结果评估:分析聚类结果,如距离误差和等

聚类方法

1.划分类聚类方法

代表:k-means算法

基本思想:对于给定的类别数据k首先给出初始划分 ,通过迭代 改变样本和簇的隶属关系,使得每一次改进后的划分方法都比前一次更好

优点:简单快速;当簇近似于高斯分布时效果好

缺点:在簇的平均值 可被定义时才能使用;对初值敏感

2.层次聚类方法 :对给定的数据集进行层次的分解 ,直到满足某种条件为止

如下图所示,由于a、b某特征有相似之处,将他们聚类一类,以此类推

特征:对噪声敏感

3.基于密度的聚类方法

典型算法:DBSCAN算法

特点:抗噪效果好;性能一般

聚类算法效果评判

  1. 均一性:聚类结果的一致性或者稳定性
  2. 完整性:聚类结果真实类别或标签之间的一致性
  3. V-measure:综合考虑了均一性完整性
  4. ARI:比较了聚类结果与真实类别之间的一致性,考虑了分类中的随机性因素
  5. AMI:聚类结果与真实类别之间的一致性,同时考虑了类别分布的随机性
  6. 轮廓系数:结合了聚类的紧密度(密度 )和分离度(分散度
相关推荐
凌峰的博客13 小时前
基于深度学习的图像安全与隐私保护研究方向调研(中)
人工智能·深度学习·安全
aigcapi18 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪18 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭19 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力19 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
Blossom.11819 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_19 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋19 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_19 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain
GetcharZp20 小时前
工地“火眼金睛”!手把手带你用 YOLO11 实现安全帽佩戴检测
人工智能·计算机视觉