机器学习Day10:聚类

概念

聚类是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性尽可能大

聚类的过程

  1. 数据准备:特征标准化和降维
  2. 特征选择:从最初的特征中选择最有效的特征,并将其存储在向量中
  3. 特征提取:通过对选择的特征进行转换形成新的突出特征
  4. 聚类:基于某种距离函数 进行相似度度量,获取簇
  5. 聚类结果评估:分析聚类结果,如距离误差和等

聚类方法

1.划分类聚类方法

代表:k-means算法

基本思想:对于给定的类别数据k首先给出初始划分 ,通过迭代 改变样本和簇的隶属关系,使得每一次改进后的划分方法都比前一次更好

优点:简单快速;当簇近似于高斯分布时效果好

缺点:在簇的平均值 可被定义时才能使用;对初值敏感

2.层次聚类方法 :对给定的数据集进行层次的分解 ,直到满足某种条件为止

如下图所示,由于a、b某特征有相似之处,将他们聚类一类,以此类推

特征:对噪声敏感

3.基于密度的聚类方法

典型算法:DBSCAN算法

特点:抗噪效果好;性能一般

聚类算法效果评判

  1. 均一性:聚类结果的一致性或者稳定性
  2. 完整性:聚类结果真实类别或标签之间的一致性
  3. V-measure:综合考虑了均一性完整性
  4. ARI:比较了聚类结果与真实类别之间的一致性,考虑了分类中的随机性因素
  5. AMI:聚类结果与真实类别之间的一致性,同时考虑了类别分布的随机性
  6. 轮廓系数:结合了聚类的紧密度(密度 )和分离度(分散度
相关推荐
飞哥数智坊20 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三20 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯21 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet1 天前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算1 天前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心1 天前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar1 天前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai1 天前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear1 天前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp