机器学习Day10:聚类

概念

聚类是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性尽可能大

聚类的过程

  1. 数据准备:特征标准化和降维
  2. 特征选择:从最初的特征中选择最有效的特征,并将其存储在向量中
  3. 特征提取:通过对选择的特征进行转换形成新的突出特征
  4. 聚类:基于某种距离函数 进行相似度度量,获取簇
  5. 聚类结果评估:分析聚类结果,如距离误差和等

聚类方法

1.划分类聚类方法

代表:k-means算法

基本思想:对于给定的类别数据k首先给出初始划分 ,通过迭代 改变样本和簇的隶属关系,使得每一次改进后的划分方法都比前一次更好

优点:简单快速;当簇近似于高斯分布时效果好

缺点:在簇的平均值 可被定义时才能使用;对初值敏感

2.层次聚类方法 :对给定的数据集进行层次的分解 ,直到满足某种条件为止

如下图所示,由于a、b某特征有相似之处,将他们聚类一类,以此类推

特征:对噪声敏感

3.基于密度的聚类方法

典型算法:DBSCAN算法

特点:抗噪效果好;性能一般

聚类算法效果评判

  1. 均一性:聚类结果的一致性或者稳定性
  2. 完整性:聚类结果真实类别或标签之间的一致性
  3. V-measure:综合考虑了均一性完整性
  4. ARI:比较了聚类结果与真实类别之间的一致性,考虑了分类中的随机性因素
  5. AMI:聚类结果与真实类别之间的一致性,同时考虑了类别分布的随机性
  6. 轮廓系数:结合了聚类的紧密度(密度 )和分离度(分散度
相关推荐
xuxianliang5 分钟前
第154章 “神谕”的低语(AI)
人工智能·程序员创富
geneculture7 分钟前
人机互助新时代超级个体(OPC)的学术述评——基于人文学科与数理学科的双重视域
大数据·人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)
KG_LLM图谱增强大模型10 分钟前
给具身智能装上图谱大模型大脑,7B小模型超越72B大模型!层次化知识图谱让复杂机器人规划能力暴增17%,能耗大幅降低
人工智能·机器人·知识图谱
2401_8362358617 分钟前
名片识别产品:技术要点与应用场景深度解析
人工智能·科技·深度学习·ocr
zchxzl26 分钟前
亲测2026京津冀可靠广告展会
大数据·人工智能·python
人工智能AI技术29 分钟前
Stable Diffusion 3.0实战:用Colab免费训练你的专属AI绘画模型
人工智能·ai作画
龙山云仓1 小时前
No159:AI中国故事-对话娄敬——戍策长安与AI远见:草根智慧与国都定鼎
人工智能·深度学习·机器学习
qq_390369531 小时前
豆包2.0(Doubao-Seed-2.0)和千问Qwen3.5发布,与Gemini 3 Pro比如何
人工智能
数字芯片实验室2 小时前
AI时代,芯片工程师的入行门槛也被重新定义了
人工智能
Fairy要carry2 小时前
面试-Infra之FFN
人工智能