机器学习Day10:聚类

概念

聚类是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性尽可能大

聚类的过程

  1. 数据准备:特征标准化和降维
  2. 特征选择:从最初的特征中选择最有效的特征,并将其存储在向量中
  3. 特征提取:通过对选择的特征进行转换形成新的突出特征
  4. 聚类:基于某种距离函数 进行相似度度量,获取簇
  5. 聚类结果评估:分析聚类结果,如距离误差和等

聚类方法

1.划分类聚类方法

代表:k-means算法

基本思想:对于给定的类别数据k首先给出初始划分 ,通过迭代 改变样本和簇的隶属关系,使得每一次改进后的划分方法都比前一次更好

优点:简单快速;当簇近似于高斯分布时效果好

缺点:在簇的平均值 可被定义时才能使用;对初值敏感

2.层次聚类方法 :对给定的数据集进行层次的分解 ,直到满足某种条件为止

如下图所示,由于a、b某特征有相似之处,将他们聚类一类,以此类推

特征:对噪声敏感

3.基于密度的聚类方法

典型算法:DBSCAN算法

特点:抗噪效果好;性能一般

聚类算法效果评判

  1. 均一性:聚类结果的一致性或者稳定性
  2. 完整性:聚类结果真实类别或标签之间的一致性
  3. V-measure:综合考虑了均一性完整性
  4. ARI:比较了聚类结果与真实类别之间的一致性,考虑了分类中的随机性因素
  5. AMI:聚类结果与真实类别之间的一致性,同时考虑了类别分布的随机性
  6. 轮廓系数:结合了聚类的紧密度(密度 )和分离度(分散度
相关推荐
阿林来了3 分钟前
Flutter三方库适配OpenHarmony【flutter_speech】— 语音识别启动与参数配置
人工智能·flutter·语音识别·harmonyos
软件算法开发4 分钟前
基于火烈鸟搜索算法的LSTM网络模型(FSA-LSTM)的一维时间序列预测matlab仿真
人工智能·rnn·matlab·lstm·一维时间序列预测·火烈鸟搜索算法·fsa-lstm
永霖光电_UVLED8 小时前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG20128 小时前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI9 小时前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名9 小时前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子9 小时前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail9 小时前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai
紫微AI9 小时前
Anthropic Claude Code 工程博客精读:构建可靠长时运行AI代理的有效框架实践
人工智能
量子-Alex9 小时前
【大模型思维链】自洽性提升语言模型中的思维链推理能力
人工智能·语言模型·自然语言处理