c小红的图上划分(牛客127)

题意:

有一个无向图,有 n 个点 m 条边,q 个询问,每次给出 L,R,求将图划分为至少 L 个连通块,最多 R个连通块的最大划分价值,若不可划分输出 "NO ANSWER"。

图的划分定义为将图划分为一个或多个连通块,对于每个连通块,其点集为其边集中每一条边的两端点的集合,且点集内任意两点均可通过边集里的边互相到达。

划分价值定义为所有连通块边集中的最小边权。

分析:先将边从大到小排序;用并查集,如果新增边的点没有共同祖先,连通块就减1,只要判断连通块<=r即可满足条件,不用管l的值,因为减少一个连通块,也就是多增一条边,这条边一定会小于原来的值的,答案要的是最大值,所有不用管。

#include<bits/stdc++.h>

using namespace std;

const int N=2e5+10;

int f[N],ans[N];

struct A{

int u,v,w;

}e[N];

int zx(int x){

if(f[x]==x)return x;//x没爸爸

else return f[x]=zx(f[x]);//找出爸爸的爸爸的。。

}

void h(int x,int y){

f[zx(y)]=zx(x);//x的最大祖先变成y最大祖先的爸爸;

}

bool cmp(A x,A y){

return x.w>y.w;

}

int main(){

int n,m,q;cin>>n>>m>>q;

for(int i=1;i<=m;i++)cin>>e[i].u>>e[i].v>>e[i].w;

sort(e+1,e+m+1,cmp);

for(int i=1;i<=n;i++)f[i]=i;

int lt=n;

for(int i=1;i<=m;i++){

if(zx(e[i].u)!=zx(e[i].v)){

h(e[i].u,e[i].v);

lt--;

ans[lt]=e[i].w;

}

}

while(q--){

int l,r;

cin>>l>>r;

if(r<lt)cout<<"NO ANSWER"<<endl;

else cout<<ans[r]<<endl;

}

return 0;

}

相关推荐
是小崔啊7 分钟前
开源轮子 - EasyExcel01(核心api)
java·开发语言·开源·excel·阿里巴巴
ALISHENGYA12 分钟前
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之分支结构(switch语句)
数据结构·算法
tianmu_sama13 分钟前
[Effective C++]条款38-39 复合和private继承
开发语言·c++
chengooooooo14 分钟前
代码随想录训练营第二十七天| 贪心理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和
算法·leetcode·职场和发展
黄公子学安全16 分钟前
Java的基础概念(一)
java·开发语言·python
liwulin050616 分钟前
【JAVA】Tesseract-OCR截图屏幕指定区域识别0.4.2
java·开发语言·ocr
jackiendsc21 分钟前
Java的垃圾回收机制介绍、工作原理、算法及分析调优
java·开发语言·算法
Oneforlove_twoforjob25 分钟前
【Java基础面试题027】Java的StringBuilder是怎么实现的?
java·开发语言
羚羊角uou28 分钟前
【C++】优先级队列以及仿函数
开发语言·c++
姚先生9732 分钟前
LeetCode 54. 螺旋矩阵 (C++实现)
c++·leetcode·矩阵